Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbalt Structured version   Unicode version

Theorem bj-hbalt 31181
Description: Closed form of hbal 1898. When in main part, prove hbal 1898 and hbald 1902 from it. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-hbalt  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )

Proof of Theorem bj-hbalt
StepHypRef Expression
1 alim 1677 . 2  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
2 ax-11 1896 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2syl6 34 1  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1676  ax-11 1896
This theorem is referenced by:  bj-hbext  31205  bj-nfalt  31206  bj-cbv3ta  31211
  Copyright terms: Public domain W3C validator