Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-falor2 Structured version   Visualization version   Unicode version

Theorem bj-falor2 31181
Description: Dual of truan 1463. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-falor2  |-  ( ( F.  \/  ph )  <->  ph )

Proof of Theorem bj-falor2
StepHypRef Expression
1 falim 1460 . . 3  |-  ( F. 
->  ph )
21bj-jaoi1 31155 . 2  |-  ( ( F.  \/  ph )  ->  ph )
3 olc 386 . 2  |-  ( ph  ->  ( F.  \/  ph ) )
42, 3impbii 191 1  |-  ( ( F.  \/  ph )  <->  ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    \/ wo 370   F. wfal 1451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-or 372  df-tru 1449  df-fal 1452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator