Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsalhv Structured version   Visualization version   Unicode version

Theorem bj-equsalhv 31412
 Description: Version of equsalh 2142 with a dv condition, which does not require ax-13 2104. Remark: this is the same as equsalhw 2047. Remarks: equsexvw 1856 has been moved to Main; the theorem axc9lem2 2146 has a dv version which is a simple consequence of ax5e 1768; the theorems nfeqf2 2148, dveeq2 2149, nfeqf1 2150, dveeq1 2151, nfeqf 2152, axc9 2154, ax13 2155, have dv versions which are simple consequences of ax-5 1766. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-equsalhv.nf
bj-equsalhv.1
Assertion
Ref Expression
bj-equsalhv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem bj-equsalhv
StepHypRef Expression
1 bj-equsalhv.nf . . 3
21nfi 1682 . 2
3 bj-equsalhv.1 . 2
42, 3bj-equsalv 31411 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189  wal 1450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-ex 1672  df-nf 1676 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator