Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dral1v Structured version   Unicode version

Theorem bj-dral1v 34746
Description: Version of dral1 2071 with a dv condition, which does not require ax-13 2004. Remark: the corresponding versions for dral2 2070 and drex2 2074 are instances of albidv 1718 and exbidv 1719 respectively. (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-dral1v.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
bj-dral1v  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem bj-dral1v
StepHypRef Expression
1 nfa1 1902 . . 3  |-  F/ x A. x  x  =  y
2 bj-dral1v.1 . . 3  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
31, 2albid 1890 . 2  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. x ps ) )
4 bj-axc11v 34739 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ps 
->  A. y ps )
)
5 axc112 1942 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. x ps )
)
64, 5impbid 191 . 2  |-  ( A. x  x  =  y  ->  ( A. x ps  <->  A. y ps ) )
73, 6bitrd 253 1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-12 1859
This theorem depends on definitions:  df-bi 185  df-ex 1618  df-nf 1622
This theorem is referenced by:  bj-drex1v  34747  bj-drnf1v  34748
  Copyright terms: Public domain W3C validator