Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-con3thALT Structured version   Unicode version

Theorem bj-con3thALT 31160
 Description: Version of con3th 966 using the conditional operator in its proof. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-con3thALT

Proof of Theorem bj-con3thALT
StepHypRef Expression
1 bicom1 202 . . . 4 if- if-
21notbid 295 . . 3 if- if-
32imbi1d 318 . 2 if- if-
41imbi2d 317 . . . 4 if- if-
5 bicom1 202 . . . . 5 if- if-
65imbi2d 317 . . . 4 if- if-
7 id 22 . . . 4
84, 6, 7bj-elimhyp 31158 . . 3 if-
98con3i 140 . 2 if-
103, 9bj-dedthm 31159 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187  if-wif 1420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ifp 1421 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator