Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-con2comi Structured version   Unicode version

Theorem bj-con2comi 30719
Description: Inference associated with bj-con2com 30718. Its associated inference is mt2 181. TODO: when in the main part, add to mt2 181 that it is the inference associated with bj-con2comi 30719. (Contributed by BJ, 19-Mar-2020.)
Hypothesis
Ref Expression
bj-con2comi.1  |-  ph
Assertion
Ref Expression
bj-con2comi  |-  ( ( ps  ->  -.  ph )  ->  -.  ps )

Proof of Theorem bj-con2comi
StepHypRef Expression
1 bj-con2comi.1 . 2  |-  ph
2 bj-con2com 30718 . 2  |-  ( ph  ->  ( ( ps  ->  -. 
ph )  ->  -.  ps ) )
31, 2ax-mp 5 1  |-  ( ( ps  ->  -.  ph )  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator