Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Unicode version

Theorem bj-ccssccbar 35020
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar  |-  CC  C_ CCbar

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 3653 . 2  |-  CC  C_  ( CC  u. CCinfty )
2 df-bj-ccbar 35019 . 2  |- CCbar  =  ( CC  u. CCinfty )
31, 2sseqtr4i 3522 1  |-  CC  C_ CCbar
Colors of variables: wff setvar class
Syntax hints:    u. cun 3459    C_ wss 3461   CCcc 9479  CCinftycccinfty 35014  CCbarcccbar 35018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-un 3466  df-in 3468  df-ss 3475  df-bj-ccbar 35019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator