Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-biorfi Structured version   Unicode version

Theorem bj-biorfi 30951
Description: This should be labeled "biorfi" while the current biorfi 408 should be labeled "biorfri". The dual of biorf 406 is not biantr 939 but iba 505 (and ibar 506). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-biorfi.1  |-  -.  ph
Assertion
Ref Expression
bj-biorfi  |-  ( ps  <->  (
ph  \/  ps )
)

Proof of Theorem bj-biorfi
StepHypRef Expression
1 bj-biorfi.1 . 2  |-  -.  ph
2 biorf 406 . 2  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  (
ph  \/  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by:  bj-falor  30952
  Copyright terms: Public domain W3C validator