Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axrep2 Structured version   Unicode version

Theorem bj-axrep2 32070
Description: Remove dependency on ax-13 1948 from axrep2 4402. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axrep2  |-  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem bj-axrep2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfe1 1783 . . . . 5  |-  F/ w E. w A. z ( A. y ph  ->  z  =  w )
2 nfv 1678 . . . . 5  |-  F/ w A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) )
31, 2nfim 1857 . . . 4  |-  F/ w
( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
43nfex 1878 . . 3  |-  F/ w E. x ( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
5 elequ2 1766 . . . . . . . . 9  |-  ( w  =  y  ->  (
x  e.  w  <->  x  e.  y ) )
65anbi1d 699 . . . . . . . 8  |-  ( w  =  y  ->  (
( x  e.  w  /\  A. y ph )  <->  ( x  e.  y  /\  A. y ph ) ) )
76exbidv 1685 . . . . . . 7  |-  ( w  =  y  ->  ( E. x ( x  e.  w  /\  A. y ph )  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
87bibi2d 318 . . . . . 6  |-  ( w  =  y  ->  (
( z  e.  x  <->  E. x ( x  e.  w  /\  A. y ph ) )  <->  ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) )
98albidv 1684 . . . . 5  |-  ( w  =  y  ->  ( A. z ( z  e.  x  <->  E. x ( x  e.  w  /\  A. y ph ) )  <->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) )
109imbi2d 316 . . . 4  |-  ( w  =  y  ->  (
( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  w  /\  A. y ph ) ) )  <->  ( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) ) )
1110exbidv 1685 . . 3  |-  ( w  =  y  ->  ( E. x ( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  w  /\  A. y ph ) ) )  <->  E. x
( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) ) )
12 bj-axrep1 32069 . . 3  |-  E. x
( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  w  /\  A. y ph ) ) )
134, 11, 12bj-chvarv 31985 . 2  |-  E. x
( E. w A. z ( A. y ph  ->  z  =  w )  ->  A. z
( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
14 sp 1799 . . . . . . 7  |-  ( A. y ph  ->  ph )
1514imim1i 58 . . . . . 6  |-  ( (
ph  ->  z  =  y )  ->  ( A. y ph  ->  z  =  y ) )
1615alimi 1609 . . . . 5  |-  ( A. z ( ph  ->  z  =  y )  ->  A. z ( A. y ph  ->  z  =  y ) )
1716eximi 1630 . . . 4  |-  ( E. y A. z (
ph  ->  z  =  y )  ->  E. y A. z ( A. y ph  ->  z  =  y ) )
18 nfv 1678 . . . . 5  |-  F/ w A. z ( A. y ph  ->  z  =  y )
19 nfa1 1835 . . . . . . 7  |-  F/ y A. y ph
20 nfv 1678 . . . . . . 7  |-  F/ y  z  =  w
2119, 20nfim 1857 . . . . . 6  |-  F/ y ( A. y ph  ->  z  =  w )
2221nfal 1877 . . . . 5  |-  F/ y A. z ( A. y ph  ->  z  =  w )
23 equequ2 1742 . . . . . . 7  |-  ( y  =  w  ->  (
z  =  y  <->  z  =  w ) )
2423imbi2d 316 . . . . . 6  |-  ( y  =  w  ->  (
( A. y ph  ->  z  =  y )  <-> 
( A. y ph  ->  z  =  w ) ) )
2524albidv 1684 . . . . 5  |-  ( y  =  w  ->  ( A. z ( A. y ph  ->  z  =  y )  <->  A. z ( A. y ph  ->  z  =  w ) ) )
2618, 22, 25bj-cbvexv 31996 . . . 4  |-  ( E. y A. z ( A. y ph  ->  z  =  y )  <->  E. w A. z ( A. y ph  ->  z  =  w ) )
2717, 26sylib 196 . . 3  |-  ( E. y A. z (
ph  ->  z  =  y )  ->  E. w A. z ( A. y ph  ->  z  =  w ) )
2827imim1i 58 . 2  |-  ( ( E. w A. z
( A. y ph  ->  z  =  w )  ->  A. z ( z  e.  x  <->  E. x
( x  e.  y  /\  A. y ph ) ) )  -> 
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) ) )
2913, 28eximii 1632 1  |-  E. x
( E. y A. z ( ph  ->  z  =  y )  ->  A. z ( z  e.  x  <->  E. x ( x  e.  y  /\  A. y ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1362   E.wex 1591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-rep 4400
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1367  df-ex 1592  df-nf 1595
This theorem is referenced by:  bj-axrep3  32071
  Copyright terms: Public domain W3C validator