Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrimh Structured version   Unicode version

Theorem bj-alrimh 30772
Description: Closed form of alrimih 1663 (actually, of the more general bj-alrimih 30773). (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-alrimh  |-  ( A. x ( ps  ->  ch )  ->  ( ( ph  ->  A. x ps )  ->  ( ph  ->  A. x ch ) ) )

Proof of Theorem bj-alrimh
StepHypRef Expression
1 alim 1653 . 2  |-  ( A. x ( ps  ->  ch )  ->  ( A. x ps  ->  A. x ch ) )
21imim2d 51 1  |-  ( A. x ( ps  ->  ch )  ->  ( ( ph  ->  A. x ps )  ->  ( ph  ->  A. x ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1652
This theorem is referenced by:  bj-alrimih  30773  bj-alrimh2  30774  bj-nexdh  30778  bj-alrim  30810  bj-cbv3ta  30834
  Copyright terms: Public domain W3C validator