Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrimh Structured version   Unicode version

Theorem bj-alrimh 31147
Description: Closed form of alrimih 1687 (actually, of the more general bj-alrimih 31148). (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-alrimh  |-  ( A. x ( ps  ->  ch )  ->  ( ( ph  ->  A. x ps )  ->  ( ph  ->  A. x ch ) ) )

Proof of Theorem bj-alrimh
StepHypRef Expression
1 alim 1677 . 2  |-  ( A. x ( ps  ->  ch )  ->  ( A. x ps  ->  A. x ch ) )
21imim2d 54 1  |-  ( A. x ( ps  ->  ch )  ->  ( ( ph  ->  A. x ps )  ->  ( ph  ->  A. x ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1676
This theorem is referenced by:  bj-alrimih  31148  bj-alrimh2  31149  bj-nexdh  31153  bj-alrim  31187  bj-cbv3ta  31211
  Copyright terms: Public domain W3C validator