Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abeq2 Structured version   Unicode version

Theorem bj-abeq2 34502
Description: Remove dependency on ax-13 2000 from abeq2 2581. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abeq2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem bj-abeq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-5 1705 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
2 bj-hbab1 34499 . . 3  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
31, 2bj-cleqh 34501 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  x  e.  { x  | 
ph } ) )
4 abid 2444 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
54bibi2i 313 . . 3  |-  ( ( x  e.  A  <->  x  e.  { x  |  ph }
)  <->  ( x  e.  A  <->  ph ) )
65albii 1641 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  ph } )  <->  A. x
( x  e.  A  <->  ph ) )
73, 6bitri 249 1  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   A.wal 1393    = wceq 1395    e. wcel 1819   {cab 2442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452
This theorem is referenced by:  bj-abeq1  34503  bj-abbi2i  34505  bj-abbi2dv  34509  bj-clabel  34512  bj-ru1  34644
  Copyright terms: Public domain W3C validator