Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1ex Structured version   Unicode version

Theorem bj-1ex 34255
Description:  1o is a set. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1ex  |-  1o  e.  _V

Proof of Theorem bj-1ex
StepHypRef Expression
1 df-1o 7132 . 2  |-  1o  =  suc  (/)
2 0ex 4567 . . 3  |-  (/)  e.  _V
32sucex 6631 . 2  |-  suc  (/)  e.  _V
41, 3eqeltri 2527 1  |-  1o  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1804   _Vcvv 3095   (/)c0 3770   suc csuc 4870   1oc1o 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-rex 2799  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-sn 4015  df-pr 4017  df-uni 4235  df-suc 4874  df-1o 7132
This theorem is referenced by:  bj-2ex  34256  bj-pr2val  34324  bj-2upln1upl  34330
  Copyright terms: Public domain W3C validator