Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.23bit Structured version   Visualization version   Unicode version

Theorem bj-19.23bit 31296
Description: Closed form of 19.23bi 1951. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-19.23bit  |-  ( ( E. x ph  ->  ps )  ->  ( ph  ->  ps ) )

Proof of Theorem bj-19.23bit
StepHypRef Expression
1 19.8a 1937 . 2  |-  ( ph  ->  E. x ph )
21imim1i 60 1  |-  ( ( E. x ph  ->  ps )  ->  ( ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-12 1935
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator