MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval Structured version   Unicode version

Theorem bitsval 14372
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval  |-  ( M  e.  (bits `  N
)  <->  ( N  e.  ZZ  /\  M  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )

Proof of Theorem bitsval
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 14370 . . . . 5  |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) ) } )
21dmmptss 5351 . . . 4  |-  dom bits  C_  ZZ
3 elfvdm 5907 . . . 4  |-  ( M  e.  (bits `  N
)  ->  N  e.  dom bits )
42, 3sseldi 3468 . . 3  |-  ( M  e.  (bits `  N
)  ->  N  e.  ZZ )
5 bitsfval 14371 . . . . 5  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
65eleq2d 2499 . . . 4  |-  ( N  e.  ZZ  ->  ( M  e.  (bits `  N
)  <->  M  e.  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) } ) )
7 oveq2 6313 . . . . . . . . 9  |-  ( m  =  M  ->  (
2 ^ m )  =  ( 2 ^ M ) )
87oveq2d 6321 . . . . . . . 8  |-  ( m  =  M  ->  ( N  /  ( 2 ^ m ) )  =  ( N  /  (
2 ^ M ) ) )
98fveq2d 5885 . . . . . . 7  |-  ( m  =  M  ->  ( |_ `  ( N  / 
( 2 ^ m
) ) )  =  ( |_ `  ( N  /  ( 2 ^ M ) ) ) )
109breq2d 4438 . . . . . 6  |-  ( m  =  M  ->  (
2  ||  ( |_ `  ( N  /  (
2 ^ m ) ) )  <->  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
1110notbid 295 . . . . 5  |-  ( m  =  M  ->  ( -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
1211elrab 3235 . . . 4  |-  ( M  e.  { m  e. 
NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }  <->  ( M  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
136, 12syl6bb 264 . . 3  |-  ( N  e.  ZZ  ->  ( M  e.  (bits `  N
)  <->  ( M  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) ) )
144, 13biadan2 646 . 2  |-  ( M  e.  (bits `  N
)  <->  ( N  e.  ZZ  /\  ( M  e.  NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) ) )
15 3anass 986 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0  /\  -.  2  ||  ( |_ `  ( N  /  (
2 ^ M ) ) ) )  <->  ( N  e.  ZZ  /\  ( M  e.  NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) ) )
1614, 15bitr4i 255 1  |-  ( M  e.  (bits `  N
)  <->  ( N  e.  ZZ  /\  M  e. 
NN0  /\  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   {crab 2786   class class class wbr 4426   dom cdm 4854   ` cfv 5601  (class class class)co 6305    / cdiv 10268   2c2 10659   NN0cn0 10869   ZZcz 10937   |_cfl 12023   ^cexp 12269    || cdvds 14283  bitscbits 14367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rrecex 9610  ax-cnre 9611
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-nn 10610  df-n0 10870  df-bits 14370
This theorem is referenced by:  bitsval2  14373  bitsss  14374  bitsfzo  14383  bitsmod  14384  bitscmp  14386
  Copyright terms: Public domain W3C validator