MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Unicode version

Theorem bitsfzolem 12901
Description: Lemma for bitsfzo 12902. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
bitsfzo.1  |-  ( ph  ->  N  e.  NN0 )
bitsfzo.2  |-  ( ph  ->  M  e.  NN0 )
bitsfzo.3  |-  ( ph  ->  (bits `  N )  C_  ( 0..^ M ) )
bitsfzo.4  |-  S  =  sup ( { n  e.  NN0  |  N  < 
( 2 ^ n
) } ,  RR ,  `'  <  )
Assertion
Ref Expression
bitsfzolem  |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M
) ) )
Distinct variable group:    n, N
Allowed substitution hints:    ph( n)    S( n)    M( n)

Proof of Theorem bitsfzolem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3  |-  ( ph  ->  N  e.  NN0 )
2 nn0uz 10476 . . 3  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2494 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
4 2nn 10089 . . . . 5  |-  2  e.  NN
54a1i 11 . . . 4  |-  ( ph  ->  2  e.  NN )
6 bitsfzo.2 . . . 4  |-  ( ph  ->  M  e.  NN0 )
75, 6nnexpcld 11499 . . 3  |-  ( ph  ->  ( 2 ^ M
)  e.  NN )
87nnzd 10330 . 2  |-  ( ph  ->  ( 2 ^ M
)  e.  ZZ )
9 bitsfzo.3 . . . . . . . 8  |-  ( ph  ->  (bits `  N )  C_  ( 0..^ M ) )
109adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (bits `  N )  C_  (
0..^ M ) )
11 1lt2 10098 . . . . . . . . . . 11  |-  1  <  2
12 1re 9046 . . . . . . . . . . . 12  |-  1  e.  RR
13 2re 10025 . . . . . . . . . . . 12  |-  2  e.  RR
1412, 13ltnlei 9150 . . . . . . . . . . 11  |-  ( 1  <  2  <->  -.  2  <_  1 )
1511, 14mpbi 200 . . . . . . . . . 10  |-  -.  2  <_  1
16 2z 10268 . . . . . . . . . . 11  |-  2  e.  ZZ
17 1nn 9967 . . . . . . . . . . 11  |-  1  e.  NN
18 dvdsle 12850 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  1  e.  NN )  ->  ( 2  ||  1  ->  2  <_  1 ) )
1916, 17, 18mp2an 654 . . . . . . . . . 10  |-  ( 2 
||  1  ->  2  <_  1 )
2015, 19mto 169 . . . . . . . . 9  |-  -.  2  ||  1
214a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  NN )
22 ssrab2 3388 . . . . . . . . . . . . . . . . . . . . 21  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  C_  NN0
23 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22  |-  S  =  sup ( { n  e.  NN0  |  N  < 
( 2 ^ n
) } ,  RR ,  `'  <  )
2422, 2sseqtri 3340 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  C_  ( ZZ>=
`  0 )
25 nnssnn0 10180 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  NN  C_  NN0
261nn0red 10231 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  RR )
2713a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  2  e.  RR )
2811a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  1  <  2 )
29 expnbnd 11463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. n  e.  NN  N  <  (
2 ^ n ) )
3026, 27, 28, 29syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  E. n  e.  NN  N  <  ( 2 ^ n ) )
31 ssrexv 3368 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( NN  C_  NN0  ->  ( E. n  e.  NN  N  <  ( 2 ^ n
)  ->  E. n  e.  NN0  N  <  (
2 ^ n ) ) )
3225, 30, 31mpsyl 61 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  E. n  e.  NN0  N  <  ( 2 ^ n ) )
33 rabn0 3607 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { n  e.  NN0  |  N  <  ( 2 ^ n ) }  =/=  (/)  <->  E. n  e.  NN0  N  <  ( 2 ^ n
) )
3432, 33sylibr 204 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { n  e.  NN0  |  N  <  ( 2 ^ n ) }  =/=  (/) )
35 infmssuzcl 10515 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } 
C_  ( ZZ>= `  0
)  /\  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  =/=  (/) )  ->  sup ( { n  e. 
NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  `'  <  )  e.  {
n  e.  NN0  |  N  <  ( 2 ^ n ) } )
3624, 34, 35sylancr 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  sup ( { n  e.  NN0  |  N  < 
( 2 ^ n
) } ,  RR ,  `'  <  )  e. 
{ n  e.  NN0  |  N  <  ( 2 ^ n ) } )
3723, 36syl5eqel 2488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  e.  { n  e.  NN0  |  N  < 
( 2 ^ n
) } )
3822, 37sseldi 3306 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S  e.  NN0 )
3938nn0zd 10329 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  S  e.  ZZ )
4039adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  ZZ )
41 0z 10249 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  ZZ
4241a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  e.  ZZ )
4342zred 10331 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  e.  RR )
446nn0zd 10329 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  ZZ )
4544adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  ZZ )
4645zred 10331 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  RR )
4740zred 10331 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  RR )
486adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  NN0 )
4948nn0ge0d 10233 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  <_  M )
5013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  RR )
5150, 48reexpcld 11495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  e.  RR )
5226adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  e.  RR )
535, 38nnexpcld 11499 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 2 ^ S
)  e.  NN )
5453adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  e.  NN )
5554nnred 9971 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  e.  RR )
56 simpr 448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  <_  N )
5737adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  { n  e.  NN0  |  N  <  ( 2 ^ n ) } )
58 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  S  ->  (
2 ^ m )  =  ( 2 ^ S ) )
5958breq2d 4184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  S  ->  ( N  <  ( 2 ^ m )  <->  N  <  ( 2 ^ S ) ) )
60 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
2 ^ n )  =  ( 2 ^ m ) )
6160breq2d 4184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  m  ->  ( N  <  ( 2 ^ n )  <->  N  <  ( 2 ^ m ) ) )
6261cbvrabv 2915 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  =  {
m  e.  NN0  |  N  <  ( 2 ^ m ) }
6359, 62elrab2 3054 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  <->  ( S  e. 
NN0  /\  N  <  ( 2 ^ S ) ) )
6463simprbi 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  ->  N  <  ( 2 ^ S ) )
6557, 64syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  <  ( 2 ^ S
) )
6651, 52, 55, 56, 65lelttrd 9184 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  <  ( 2 ^ S ) )
6711a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  <  2 )
6850, 45, 40, 67ltexp2d 11507 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( M  <  S  <->  ( 2 ^ M )  < 
( 2 ^ S
) ) )
6966, 68mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  <  S )
7043, 46, 47, 49, 69lelttrd 9184 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  <  S )
71 elnnz 10248 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  NN  <->  ( S  e.  ZZ  /\  0  < 
S ) )
7240, 70, 71sylanbrc 646 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  NN )
73 nnm1nn0 10217 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
7472, 73syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  NN0 )
7521, 74nnexpcld 11499 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  NN )
7675nncnd 9972 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  CC )
7776mulid2d 9062 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
1  x.  ( 2 ^ ( S  - 
1 ) ) )  =  ( 2 ^ ( S  -  1 ) ) )
7847ltm1d 9899 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  <  S )
7974nn0red 10231 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  RR )
8079, 47ltnled 9176 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  <  S  <->  -.  S  <_  ( S  -  1 ) ) )
8178, 80mpbid 202 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  S  <_  ( S  - 
1 ) )
82 oveq2 6048 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  ( S  - 
1 )  ->  (
2 ^ m )  =  ( 2 ^ ( S  -  1 ) ) )
8382breq2d 4184 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( S  - 
1 )  ->  ( N  <  ( 2 ^ m )  <->  N  <  ( 2 ^ ( S  -  1 ) ) ) )
8483, 62elrab2 3054 . . . . . . . . . . . . . . . . 17  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  <->  ( ( S  -  1 )  e. 
NN0  /\  N  <  ( 2 ^ ( S  -  1 ) ) ) )
85 infmssuzle 10514 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } 
C_  ( ZZ>= `  0
)  /\  ( S  -  1 )  e. 
{ n  e.  NN0  |  N  <  ( 2 ^ n ) } )  ->  sup ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  `'  <  )  <_  ( S  -  1 ) )
8624, 85mpan 652 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  ->  sup ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  `'  <  )  <_  ( S  -  1 ) )
8723, 86syl5eqbr 4205 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  ->  S  <_  ( S  -  1 ) )
8887a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  e.  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  ->  S  <_  ( S  -  1 ) ) )
8984, 88syl5bir 210 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( ( S  - 
1 )  e.  NN0  /\  N  <  ( 2 ^ ( S  - 
1 ) ) )  ->  S  <_  ( S  -  1 ) ) )
9074, 89mpand 657 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  <  ( 2 ^ ( S  -  1 ) )  ->  S  <_  ( S  -  1 ) ) )
9181, 90mtod 170 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  N  <  ( 2 ^ ( S  -  1 ) ) )
9275nnred 9971 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  RR )
9392, 52lenltd 9175 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( 2 ^ ( S  -  1 ) )  <_  N  <->  -.  N  <  ( 2 ^ ( S  -  1 ) ) ) )
9491, 93mpbird 224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  <_  N )
9577, 94eqbrtrd 4192 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
1  x.  ( 2 ^ ( S  - 
1 ) ) )  <_  N )
9612a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  e.  RR )
97 2rp 10573 . . . . . . . . . . . . . . 15  |-  2  e.  RR+
9897a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  RR+ )
99 1z 10267 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
10099a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  e.  ZZ )
10140, 100zsubcld 10336 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  ZZ )
10298, 101rpexpcld 11501 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  RR+ )
10396, 52, 102lemuldivd 10649 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( 1  x.  (
2 ^ ( S  -  1 ) ) )  <_  N  <->  1  <_  ( N  /  ( 2 ^ ( S  - 
1 ) ) ) ) )
10495, 103mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  <_  ( N  /  (
2 ^ ( S  -  1 ) ) ) )
105 2cn 10026 . . . . . . . . . . . . . . 15  |-  2  e.  CC
106 expm1t 11363 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  S  e.  NN )  ->  ( 2 ^ S
)  =  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) )
107105, 72, 106sylancr 645 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  =  ( ( 2 ^ ( S  - 
1 ) )  x.  2 ) )
10865, 107breqtrd 4196 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  <  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) )
10952, 50, 102ltdivmuld 10651 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( N  /  (
2 ^ ( S  -  1 ) ) )  <  2  <->  N  <  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) ) )
110108, 109mpbird 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  <  2 )
111 df-2 10014 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
112110, 111syl6breq 4211 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  < 
( 1  +  1 ) )
11352, 102rerpdivcld 10631 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  e.  RR )
114 flbi 11178 . . . . . . . . . . . 12  |-  ( ( ( N  /  (
2 ^ ( S  -  1 ) ) )  e.  RR  /\  1  e.  ZZ )  ->  ( ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) )  =  1  <-> 
( 1  <_  ( N  /  ( 2 ^ ( S  -  1 ) ) )  /\  ( N  /  (
2 ^ ( S  -  1 ) ) )  <  ( 1  +  1 ) ) ) )
115113, 99, 114sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) )  =  1  <->  ( 1  <_  ( N  / 
( 2 ^ ( S  -  1 ) ) )  /\  ( N  /  ( 2 ^ ( S  -  1 ) ) )  < 
( 1  +  1 ) ) ) )
116104, 112, 115mpbir2and 889 . . . . . . . . . 10  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( |_ `  ( N  / 
( 2 ^ ( S  -  1 ) ) ) )  =  1 )
117116breq2d 4184 . . . . . . . . 9  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2  ||  ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) )  <->  2  ||  1 ) )
11820, 117mtbiri 295 . . . . . . . 8  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  2  ||  ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) ) )
1191nn0zd 10329 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
120119adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  e.  ZZ )
121 bitsval2 12892 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( S  -  1
)  e.  NN0 )  ->  ( ( S  - 
1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) ) ) )
122120, 74, 121syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) ) ) )
123118, 122mpbird 224 . . . . . . 7  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  (bits `  N
) )
12410, 123sseldd 3309 . . . . . 6  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  ( 0..^ M ) )
125 elfzolt2 11103 . . . . . 6  |-  ( ( S  -  1 )  e.  ( 0..^ M )  ->  ( S  -  1 )  < 
M )
126124, 125syl 16 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  <  M )
127 zlem1lt 10283 . . . . . 6  |-  ( ( S  e.  ZZ  /\  M  e.  ZZ )  ->  ( S  <_  M  <->  ( S  -  1 )  <  M ) )
12840, 45, 127syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  <_  M  <->  ( S  -  1 )  < 
M ) )
129126, 128mpbird 224 . . . 4  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  <_  M )
13046, 47ltnled 9176 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( M  <  S  <->  -.  S  <_  M ) )
13169, 130mpbid 202 . . . 4  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  S  <_  M )
132129, 131pm2.65da 560 . . 3  |-  ( ph  ->  -.  ( 2 ^ M )  <_  N
)
1337nnred 9971 . . . 4  |-  ( ph  ->  ( 2 ^ M
)  e.  RR )
13426, 133ltnled 9176 . . 3  |-  ( ph  ->  ( N  <  (
2 ^ M )  <->  -.  ( 2 ^ M
)  <_  N )
)
135132, 134mpbird 224 . 2  |-  ( ph  ->  N  <  ( 2 ^ M ) )
136 elfzo2 11098 . 2  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  <->  ( N  e.  ( ZZ>= `  0 )  /\  ( 2 ^ M
)  e.  ZZ  /\  N  <  ( 2 ^ M ) ) )
1373, 8, 135, 136syl3anbrc 1138 1  |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   {crab 2670    C_ wss 3280   (/)c0 3588   class class class wbr 4172   `'ccnv 4836   ` cfv 5413  (class class class)co 6040   supcsup 7403   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568  ..^cfzo 11090   |_cfl 11156   ^cexp 11337    || cdivides 12807  bitscbits 12886
This theorem is referenced by:  bitsfzo  12902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-dvds 12808  df-bits 12889
  Copyright terms: Public domain W3C validator