MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfval Structured version   Unicode version

Theorem bitsfval 13638
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Distinct variable group:    m, N

Proof of Theorem bitsfval
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 oveq1 6117 . . . . . 6  |-  ( n  =  N  ->  (
n  /  ( 2 ^ m ) )  =  ( N  / 
( 2 ^ m
) ) )
21fveq2d 5714 . . . . 5  |-  ( n  =  N  ->  ( |_ `  ( n  / 
( 2 ^ m
) ) )  =  ( |_ `  ( N  /  ( 2 ^ m ) ) ) )
32breq2d 4323 . . . 4  |-  ( n  =  N  ->  (
2  ||  ( |_ `  ( n  /  (
2 ^ m ) ) )  <->  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
43notbid 294 . . 3  |-  ( n  =  N  ->  ( -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
54rabbidv 2983 . 2  |-  ( n  =  N  ->  { m  e.  NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) }  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
6 df-bits 13637 . 2  |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_
`  ( n  / 
( 2 ^ m
) ) ) } )
7 nn0ex 10604 . . 3  |-  NN0  e.  _V
87rabex 4462 . 2  |-  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }  e.  _V
95, 6, 8fvmpt 5793 1  |-  ( N  e.  ZZ  ->  (bits `  N )  =  {
m  e.  NN0  |  -.  2  ||  ( |_
`  ( N  / 
( 2 ^ m
) ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1369    e. wcel 1756   {crab 2738   class class class wbr 4311   ` cfv 5437  (class class class)co 6110    / cdiv 10012   2c2 10390   NN0cn0 10598   ZZcz 10665   |_cfl 11659   ^cexp 11884    || cdivides 13554  bitscbits 13634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-i2m1 9369  ax-1ne0 9370  ax-rrecex 9373  ax-cnre 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-ov 6113  df-om 6496  df-recs 6851  df-rdg 6885  df-nn 10342  df-n0 10599  df-bits 13637
This theorem is referenced by:  bitsval  13639
  Copyright terms: Public domain W3C validator