MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Structured version   Visualization version   Unicode version

Theorem bitsfi 14490
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )

Proof of Theorem bitsfi
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0re 10902 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
2 2re 10701 . . . 4  |-  2  e.  RR
32a1i 11 . . 3  |-  ( N  e.  NN0  ->  2  e.  RR )
4 1lt2 10799 . . . 4  |-  1  <  2
54a1i 11 . . 3  |-  ( N  e.  NN0  ->  1  <  2 )
6 expnbnd 12439 . . 3  |-  ( ( N  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
71, 3, 5, 6syl3anc 1292 . 2  |-  ( N  e.  NN0  ->  E. m  e.  NN  N  <  (
2 ^ m ) )
8 fzofi 12225 . . 3  |-  ( 0..^ m )  e.  Fin
9 simpl 464 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  NN0 )
10 nn0uz 11217 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
119, 10syl6eleq 2559 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
12 2nn 10790 . . . . . . . 8  |-  2  e.  NN
1312a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  2  e.  NN )
14 simprl 772 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN )
1514nnnn0d 10949 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  m  e.  NN0 )
1613, 15nnexpcld 12475 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  NN )
1716nnzd 11062 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( 2 ^ m )  e.  ZZ )
18 simprr 774 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  <  ( 2 ^ m ) )
19 elfzo2 11950 . . . . 5  |-  ( N  e.  ( 0..^ ( 2 ^ m ) )  <->  ( N  e.  ( ZZ>= `  0 )  /\  ( 2 ^ m
)  e.  ZZ  /\  N  <  ( 2 ^ m ) ) )
2011, 17, 18, 19syl3anbrc 1214 . . . 4  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ( 0..^ ( 2 ^ m ) ) )
219nn0zd 11061 . . . . 5  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  N  e.  ZZ )
22 bitsfzo 14488 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  e.  ( 0..^ ( 2 ^ m ) )  <->  (bits `  N
)  C_  ( 0..^ m ) ) )
2321, 15, 22syl2anc 673 . . . 4  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  ( N  e.  ( 0..^ ( 2 ^ m ) )  <-> 
(bits `  N )  C_  ( 0..^ m ) ) )
2420, 23mpbid 215 . . 3  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  C_  ( 0..^ m ) )
25 ssfi 7810 . . 3  |-  ( ( ( 0..^ m )  e.  Fin  /\  (bits `  N )  C_  (
0..^ m ) )  ->  (bits `  N
)  e.  Fin )
268, 24, 25sylancr 676 . 2  |-  ( ( N  e.  NN0  /\  ( m  e.  NN  /\  N  <  ( 2 ^ m ) ) )  ->  (bits `  N
)  e.  Fin )
277, 26rexlimddv 2875 1  |-  ( N  e.  NN0  ->  (bits `  N )  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    e. wcel 1904   E.wrex 2757    C_ wss 3390   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Fincfn 7587   RRcr 9556   0cc0 9557   1c1 9558    < clt 9693   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182  ..^cfzo 11942   ^cexp 12310  bitscbits 14471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-dvds 14383  df-bits 14474
This theorem is referenced by:  bitsinv2  14496  bitsf1ocnv  14497  bitsf1  14499  eulerpartlemgc  29268  eulerpartlemgs2  29286
  Copyright terms: Public domain W3C validator