MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Unicode version

Theorem bitru 1382
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <-> T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1374 . 2  |- T.
31, 22th 239 1  |-  ( ph  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   T. wtru 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1373
This theorem is referenced by:  truorfal  1399  falortru  1400  truimtru  1402  falimtru  1404  falimfal  1405  notfal  1407  trubitru  1408  falbifal  1411  0frgp  16382  astbstanbst  30063  dandysum2p2e4  30129
  Copyright terms: Public domain W3C validator