Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bitr3 Structured version   Visualization version   Unicode version

Theorem bitr3 36910
Description: Closed nested implication form of bitr3i 259. Derived automatically from bitr3VD 37284. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bitr3  |-  ( (
ph 
<->  ps )  ->  (
( ph  <->  ch )  ->  ( ps 
<->  ch ) ) )

Proof of Theorem bitr3
StepHypRef Expression
1 bibi1 333 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  <->  ch )  <->  ( ps  <->  ch ) ) )
21biimpd 212 1  |-  ( (
ph 
<->  ps )  ->  (
( ph  <->  ch )  ->  ( ps 
<->  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190
This theorem is referenced by:  3orbi123VD  37285  sbc3orgVD  37286  trsbcVD  37313  csbrngVD  37332  e2ebindVD  37348  e2ebindALT  37365
  Copyright terms: Public domain W3C validator