MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitr Structured version   Unicode version

Theorem bitr 708
Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bitr  |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch )
)  ->  ( ph  <->  ch ) )

Proof of Theorem bitr
StepHypRef Expression
1 bibi1 327 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  <->  ch )  <->  ( ps  <->  ch ) ) )
21biimpar 485 1  |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch )
)  ->  ( ph  <->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  opelopabt  4768  domunfican  7811  albitr  31515  3orbi123VD  33836  e2ebindALT  33915
  Copyright terms: Public domain W3C validator