MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   Unicode version

Theorem birthdaylem3 23958
Description: For general  N and  K, upper-bound the fraction of injective functions from  1 ... K to  1 ... N. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
birthday.t  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
Assertion
Ref Expression
birthdaylem3  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( # `  T
)  /  ( # `  S ) )  <_ 
( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) ) )
Distinct variable groups:    f, K    f, N
Allowed substitution hints:    S( f)    T( f)

Proof of Theorem birthdaylem3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
2 abn0 3754 . . . . . . . . . . . 12  |-  ( { f  |  f : ( 1 ... K
) -1-1-> ( 1 ... N ) }  =/=  (/)  <->  E. f  f : ( 1 ... K )
-1-1-> ( 1 ... N
) )
3 ovex 6336 . . . . . . . . . . . . 13  |-  ( 1 ... N )  e. 
_V
43brdom 7599 . . . . . . . . . . . 12  |-  ( ( 1 ... K )  ~<_  ( 1 ... N
)  <->  E. f  f : ( 1 ... K
) -1-1-> ( 1 ... N ) )
52, 4bitr4i 260 . . . . . . . . . . 11  |-  ( { f  |  f : ( 1 ... K
) -1-1-> ( 1 ... N ) }  =/=  (/)  <->  ( 1 ... K )  ~<_  ( 1 ... N
) )
6 hashfz1 12567 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( # `  ( 1 ... K
) )  =  K )
7 nnnn0 10900 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
8 hashfz1 12567 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
97, 8syl 17 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... N ) )  =  N )
106, 9breqan12d 4411 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( # `  (
1 ... K ) )  <_  ( # `  (
1 ... N ) )  <-> 
K  <_  N )
)
11 fzfid 12224 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( 1 ... K
)  e.  Fin )
12 fzfid 12224 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( 1 ... N
)  e.  Fin )
13 hashdom 12596 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( # `  (
1 ... K ) )  <_  ( # `  (
1 ... N ) )  <-> 
( 1 ... K
)  ~<_  ( 1 ... N ) ) )
1411, 12, 13syl2anc 673 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( # `  (
1 ... K ) )  <_  ( # `  (
1 ... N ) )  <-> 
( 1 ... K
)  ~<_  ( 1 ... N ) ) )
15 nn0re 10902 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  K  e.  RR )
16 nnre 10638 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  RR )
17 lenlt 9730 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <_  N  <->  -.  N  <  K ) )
1815, 16, 17syl2an 485 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K  <_  N  <->  -.  N  <  K ) )
1910, 14, 183bitr3d 291 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( 1 ... K )  ~<_  ( 1 ... N )  <->  -.  N  <  K ) )
205, 19syl5bb 265 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }  =/=  (/)  <->  -.  N  <  K ) )
2120necon4abid 2683 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }  =  (/)  <->  N  <  K ) )
2221biimpar 493 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  { f  |  f : ( 1 ... K )
-1-1-> ( 1 ... N
) }  =  (/) )
231, 22syl5eq 2517 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  T  =  (/) )
2423fveq2d 5883 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( # `  T
)  =  ( # `  (/) ) )
25 hash0 12586 . . . . . 6  |-  ( # `  (/) )  =  0
2624, 25syl6eq 2521 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( # `  T
)  =  0 )
2726oveq1d 6323 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( ( # `
 T )  / 
( # `  S ) )  =  ( 0  /  ( # `  S
) ) )
28 birthday.s . . . . . . . . . 10  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
2928, 1birthdaylem1 23956 . . . . . . . . 9  |-  ( T 
C_  S  /\  S  e.  Fin  /\  ( N  e.  NN  ->  S  =/=  (/) ) )
3029simp3i 1041 . . . . . . . 8  |-  ( N  e.  NN  ->  S  =/=  (/) )
3130ad2antlr 741 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  S  =/=  (/) )
3229simp2i 1040 . . . . . . . 8  |-  S  e. 
Fin
33 hashnncl 12585 . . . . . . . 8  |-  ( S  e.  Fin  ->  (
( # `  S )  e.  NN  <->  S  =/=  (/) ) )
3432, 33ax-mp 5 . . . . . . 7  |-  ( (
# `  S )  e.  NN  <->  S  =/=  (/) )
3531, 34sylibr 217 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( # `  S
)  e.  NN )
3635nncnd 10647 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( # `  S
)  e.  CC )
3735nnne0d 10676 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( # `  S
)  =/=  0 )
3836, 37div0d 10404 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( 0  /  ( # `  S
) )  =  0 )
3927, 38eqtrd 2505 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( ( # `
 T )  / 
( # `  S ) )  =  0 )
4015adantr 472 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  K  e.  RR )
4140resqcld 12480 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( K ^ 2 )  e.  RR )
4241, 40resubcld 10068 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( K ^
2 )  -  K
)  e.  RR )
4342rehalfcld 10882 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( ( K ^ 2 )  -  K )  /  2
)  e.  RR )
44 nndivre 10667 . . . . . . . 8  |-  ( ( ( ( ( K ^ 2 )  -  K )  /  2
)  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  e.  RR )
4543, 44sylancom 680 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  e.  RR )
4645renegcld 10067 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN )  -> 
-u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N )  e.  RR )
4746adantr 472 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  -u ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  e.  RR )
4847rpefcld 14236 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) )  e.  RR+ )
4948rpge0d 11368 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  0  <_  ( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) ) )
5039, 49eqbrtrd 4416 . 2  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  N  <  K
)  ->  ( ( # `
 T )  / 
( # `  S ) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) ) )
51 simplr 770 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  N  e.  NN )
52 simpr 468 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  K  <_  N )
53 simpll 768 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  K  e.  NN0 )
54 nn0uz 11217 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
5553, 54syl6eleq 2559 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  K  e.  ( ZZ>= `  0 )
)
56 nnz 10983 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
5756ad2antlr 741 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  N  e.  ZZ )
58 elfz5 11818 . . . . . 6  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
5955, 57, 58syl2anc 673 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( K  e.  ( 0 ... N
)  <->  K  <_  N ) )
6052, 59mpbird 240 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  K  e.  ( 0 ... N
) )
6128, 1birthdaylem2 23957 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N ) )  ->  ( ( # `  T )  /  ( # `
 S ) )  =  ( exp `  sum_ k  e.  ( 0 ... ( K  - 
1 ) ) ( log `  ( 1  -  ( k  /  N ) ) ) ) )
6251, 60, 61syl2anc 673 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( ( # `
 T )  / 
( # `  S ) )  =  ( exp `  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) ) )
63 fzfid 12224 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( 0 ... ( K  - 
1 ) )  e. 
Fin )
64 elfznn0 11913 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( K  -  1 ) )  ->  k  e.  NN0 )
6564adantl 473 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  e.  NN0 )
6665nn0red 10950 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  e.  RR )
6753nn0red 10950 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  K  e.  RR )
68 peano2rem 9961 . . . . . . . . . . . . 13  |-  ( K  e.  RR  ->  ( K  -  1 )  e.  RR )
6967, 68syl 17 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( K  -  1 )  e.  RR )
7069adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  e.  RR )
7151adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  NN )
7271nnred 10646 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  RR )
73 elfzle2 11829 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( K  -  1 ) )  ->  k  <_  ( K  -  1 ) )
7473adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  <_  ( K  -  1 ) )
7551nnred 10646 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  N  e.  RR )
7667ltm1d 10561 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( K  -  1 )  < 
K )
7769, 67, 75, 76, 52ltletrd 9812 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( K  -  1 )  < 
N )
7877adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( K  -  1 )  <  N )
7966, 70, 72, 74, 78lelttrd 9810 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  <  N )
8071nncnd 10647 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  CC )
8180mulid1d 9678 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( N  x.  1 )  =  N )
8279, 81breqtrrd 4422 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  <  ( N  x.  1 ) )
83 1red 9676 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  1  e.  RR )
8471nngt0d 10675 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  0  <  N )
85 ltdivmul 10502 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( k  /  N )  <  1  <->  k  <  ( N  x.  1 ) ) )
8666, 83, 72, 84, 85syl112anc 1296 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( k  /  N
)  <  1  <->  k  <  ( N  x.  1 ) ) )
8782, 86mpbird 240 . . . . . . . 8  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
k  /  N )  <  1 )
8866, 71nndivred 10680 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
k  /  N )  e.  RR )
89 1re 9660 . . . . . . . . 9  |-  1  e.  RR
90 difrp 11360 . . . . . . . . 9  |-  ( ( ( k  /  N
)  e.  RR  /\  1  e.  RR )  ->  ( ( k  /  N )  <  1  <->  ( 1  -  ( k  /  N ) )  e.  RR+ ) )
9188, 89, 90sylancl 675 . . . . . . . 8  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( k  /  N
)  <  1  <->  ( 1  -  ( k  /  N ) )  e.  RR+ ) )
9287, 91mpbid 215 . . . . . . 7  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
1  -  ( k  /  N ) )  e.  RR+ )
9392relogcld 23651 . . . . . 6  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( log `  ( 1  -  ( k  /  N
) ) )  e.  RR )
9488renegcld 10067 . . . . . 6  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  -u (
k  /  N )  e.  RR )
95 elfzle1 11828 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( K  -  1 ) )  ->  0  <_  k )
9695adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  0  <_  k )
97 divge0 10496 . . . . . . . . . . 11  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( N  e.  RR  /\  0  <  N ) )  ->  0  <_  ( k  /  N ) )
9866, 96, 72, 84, 97syl22anc 1293 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  0  <_  ( k  /  N
) )
9988, 98, 87eflegeo 14252 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( exp `  ( k  /  N ) )  <_ 
( 1  /  (
1  -  ( k  /  N ) ) ) )
10088reefcld 14219 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( exp `  ( k  /  N ) )  e.  RR )
101 efgt0 14234 . . . . . . . . . . 11  |-  ( ( k  /  N )  e.  RR  ->  0  <  ( exp `  (
k  /  N ) ) )
10288, 101syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  0  <  ( exp `  (
k  /  N ) ) )
10392rpregt0d 11370 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( 1  -  (
k  /  N ) )  e.  RR  /\  0  <  ( 1  -  ( k  /  N
) ) ) )
104 lerec2 10516 . . . . . . . . . 10  |-  ( ( ( ( exp `  (
k  /  N ) )  e.  RR  /\  0  <  ( exp `  (
k  /  N ) ) )  /\  (
( 1  -  (
k  /  N ) )  e.  RR  /\  0  <  ( 1  -  ( k  /  N
) ) ) )  ->  ( ( exp `  ( k  /  N
) )  <_  (
1  /  ( 1  -  ( k  /  N ) ) )  <-> 
( 1  -  (
k  /  N ) )  <_  ( 1  /  ( exp `  (
k  /  N ) ) ) ) )
105100, 102, 103, 104syl21anc 1291 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( exp `  (
k  /  N ) )  <_  ( 1  /  ( 1  -  ( k  /  N
) ) )  <->  ( 1  -  ( k  /  N ) )  <_ 
( 1  /  ( exp `  ( k  /  N ) ) ) ) )
10699, 105mpbid 215 . . . . . . . 8  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
1  -  ( k  /  N ) )  <_  ( 1  / 
( exp `  (
k  /  N ) ) ) )
10792reeflogd 23652 . . . . . . . 8  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( exp `  ( log `  (
1  -  ( k  /  N ) ) ) )  =  ( 1  -  ( k  /  N ) ) )
10888recnd 9687 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
k  /  N )  e.  CC )
109 efneg 14229 . . . . . . . . 9  |-  ( ( k  /  N )  e.  CC  ->  ( exp `  -u ( k  /  N ) )  =  ( 1  /  ( exp `  ( k  /  N ) ) ) )
110108, 109syl 17 . . . . . . . 8  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( exp `  -u ( k  /  N ) )  =  ( 1  /  ( exp `  ( k  /  N ) ) ) )
111106, 107, 1103brtr4d 4426 . . . . . . 7  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( exp `  ( log `  (
1  -  ( k  /  N ) ) ) )  <_  ( exp `  -u ( k  /  N ) ) )
112 efle 14249 . . . . . . . 8  |-  ( ( ( log `  (
1  -  ( k  /  N ) ) )  e.  RR  /\  -u ( k  /  N
)  e.  RR )  ->  ( ( log `  ( 1  -  (
k  /  N ) ) )  <_  -u (
k  /  N )  <-> 
( exp `  ( log `  ( 1  -  ( k  /  N
) ) ) )  <_  ( exp `  -u (
k  /  N ) ) ) )
11393, 94, 112syl2anc 673 . . . . . . 7  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( log `  (
1  -  ( k  /  N ) ) )  <_  -u ( k  /  N )  <->  ( exp `  ( log `  (
1  -  ( k  /  N ) ) ) )  <_  ( exp `  -u ( k  /  N ) ) ) )
114111, 113mpbird 240 . . . . . 6  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( log `  ( 1  -  ( k  /  N
) ) )  <_  -u ( k  /  N
) )
11563, 93, 94, 114fsumle 13936 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) )  <_  sum_ k  e.  ( 0 ... ( K  -  1 ) ) -u ( k  /  N ) )
11663, 108fsumneg 13925 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) -u ( k  /  N )  = 
-u sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( k  /  N
) )
11751nncnd 10647 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  N  e.  CC )
11866recnd 9687 . . . . . . . . 9  |-  ( ( ( ( K  e. 
NN0  /\  N  e.  NN )  /\  K  <_  N )  /\  k  e.  ( 0 ... ( K  -  1 ) ) )  ->  k  e.  CC )
119 nnne0 10664 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
120119ad2antlr 741 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  N  =/=  0 )
12163, 117, 118, 120fsumdivc 13924 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( sum_ k  e.  ( 0 ... ( K  - 
1 ) ) k  /  N )  = 
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( k  /  N
) )
122 arisum2 13996 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) k  =  ( ( ( K ^
2 )  -  K
)  /  2 ) )
12353, 122syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) k  =  ( ( ( K ^
2 )  -  K
)  /  2 ) )
124123oveq1d 6323 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( sum_ k  e.  ( 0 ... ( K  - 
1 ) ) k  /  N )  =  ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) )
125121, 124eqtr3d 2507 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( k  /  N )  =  ( ( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) )
126125negeqd 9889 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  -u sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( k  /  N )  =  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) )
127116, 126eqtrd 2505 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) -u ( k  /  N )  = 
-u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )
128115, 127breqtrd 4420 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) )  <_  -u ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N ) )
12963, 93fsumrecl 13877 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) )  e.  RR )
13046adantr 472 . . . . 5  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  -u ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  e.  RR )
131 efle 14249 . . . . 5  |-  ( (
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) )  e.  RR  /\  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  e.  RR )  ->  ( sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) )  <_  -u ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  <->  ( exp ` 
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) ) ) )
132129, 130, 131syl2anc 673 . . . 4  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( sum_ k  e.  ( 0 ... ( K  - 
1 ) ) ( log `  ( 1  -  ( k  /  N ) ) )  <_  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N )  <->  ( exp ` 
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) ) ) )
133128, 132mpbid 215 . . 3  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( exp ` 
sum_ k  e.  ( 0 ... ( K  -  1 ) ) ( log `  (
1  -  ( k  /  N ) ) ) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) ) )
13462, 133eqbrtrd 4416 . 2  |-  ( ( ( K  e.  NN0  /\  N  e.  NN )  /\  K  <_  N
)  ->  ( ( # `
 T )  / 
( # `  S ) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) ) )
13516adantl 473 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  N  e.  RR )
13650, 134, 135, 40ltlecasei 9760 1  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( # `  T
)  /  ( # `  S ) )  <_ 
( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457    =/= wne 2641    C_ wss 3390   (/)c0 3722   class class class wbr 4395   -->wf 5585   -1-1->wf1 5586   ` cfv 5589  (class class class)co 6308    ~<_ cdom 7585   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810   ^cexp 12310   #chash 12553   sum_csu 13829   expce 14191   logclog 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585
This theorem is referenced by:  birthday  23959
  Copyright terms: Public domain W3C validator