MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthday Unicode version

Theorem birthday 20746
Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for  K  =  2 3 and  N  =  3 6 5, fewer than half of the set of all functions from  1 ... K to  1 ... N are injective. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
birthday.t  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
birthday.k  |-  K  = ; 2
3
birthday.n  |-  N  = ;; 3 6 5
Assertion
Ref Expression
birthday  |-  ( (
# `  T )  /  ( # `  S
) )  <  (
1  /  2 )
Distinct variable groups:    f, K    f, N
Allowed substitution hints:    S( f)    T( f)

Proof of Theorem birthday
StepHypRef Expression
1 birthday.k . . . 4  |-  K  = ; 2
3
2 2nn0 10194 . . . . 5  |-  2  e.  NN0
3 3nn0 10195 . . . . 5  |-  3  e.  NN0
42, 3deccl 10352 . . . 4  |- ; 2 3  e.  NN0
51, 4eqeltri 2474 . . 3  |-  K  e. 
NN0
6 birthday.n . . . 4  |-  N  = ;; 3 6 5
7 6nn0 10198 . . . . . 6  |-  6  e.  NN0
83, 7deccl 10352 . . . . 5  |- ; 3 6  e.  NN0
9 5nn 10092 . . . . 5  |-  5  e.  NN
108, 9decnncl 10351 . . . 4  |- ;; 3 6 5  e.  NN
116, 10eqeltri 2474 . . 3  |-  N  e.  NN
12 birthday.s . . . 4  |-  S  =  { f  |  f : ( 1 ... K ) --> ( 1 ... N ) }
13 birthday.t . . . 4  |-  T  =  { f  |  f : ( 1 ... K ) -1-1-> ( 1 ... N ) }
1412, 13birthdaylem3 20745 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  NN )  ->  ( ( # `  T
)  /  ( # `  S ) )  <_ 
( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) ) )
155, 11, 14mp2an 654 . 2  |-  ( (
# `  T )  /  ( # `  S
) )  <_  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )
16 log2ub 20742 . . . . . 6  |-  ( log `  2 )  < 
(;; 2 5 3  / ;; 3 6 5 )
175nn0cni 10189 . . . . . . . . . . . 12  |-  K  e.  CC
1817sqvali 11416 . . . . . . . . . . 11  |-  ( K ^ 2 )  =  ( K  x.  K
)
1917mulid1i 9048 . . . . . . . . . . . 12  |-  ( K  x.  1 )  =  K
2019eqcomi 2408 . . . . . . . . . . 11  |-  K  =  ( K  x.  1 )
2118, 20oveq12i 6052 . . . . . . . . . 10  |-  ( ( K ^ 2 )  -  K )  =  ( ( K  x.  K )  -  ( K  x.  1 ) )
22 ax-1cn 9004 . . . . . . . . . . 11  |-  1  e.  CC
2317, 17, 22subdii 9438 . . . . . . . . . 10  |-  ( K  x.  ( K  - 
1 ) )  =  ( ( K  x.  K )  -  ( K  x.  1 ) )
2421, 23eqtr4i 2427 . . . . . . . . 9  |-  ( ( K ^ 2 )  -  K )  =  ( K  x.  ( K  -  1 ) )
2524oveq1i 6050 . . . . . . . 8  |-  ( ( ( K ^ 2 )  -  K )  /  2 )  =  ( ( K  x.  ( K  -  1
) )  /  2
)
2617, 22subcli 9332 . . . . . . . . . 10  |-  ( K  -  1 )  e.  CC
27 2cn 10026 . . . . . . . . . 10  |-  2  e.  CC
28 2ne0 10039 . . . . . . . . . 10  |-  2  =/=  0
2917, 26, 27, 28divassi 9726 . . . . . . . . 9  |-  ( ( K  x.  ( K  -  1 ) )  /  2 )  =  ( K  x.  (
( K  -  1 )  /  2 ) )
30 1nn0 10193 . . . . . . . . . 10  |-  1  e.  NN0
31 2p1e3 10059 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
32 eqid 2404 . . . . . . . . . . . . . . . 16  |- ; 2 2  = ; 2 2
332, 2, 31, 32decsuc 10361 . . . . . . . . . . . . . . 15  |-  (; 2 2  +  1 )  = ; 2 3
341, 33eqtr4i 2427 . . . . . . . . . . . . . 14  |-  K  =  (; 2 2  +  1 )
3534oveq1i 6050 . . . . . . . . . . . . 13  |-  ( K  -  1 )  =  ( (; 2 2  +  1 )  -  1 )
362, 2deccl 10352 . . . . . . . . . . . . . . 15  |- ; 2 2  e.  NN0
3736nn0cni 10189 . . . . . . . . . . . . . 14  |- ; 2 2  e.  CC
38 pncan 9267 . . . . . . . . . . . . . 14  |-  ( (; 2
2  e.  CC  /\  1  e.  CC )  ->  ( (; 2 2  +  1 )  -  1 )  = ; 2 2 )
3937, 22, 38mp2an 654 . . . . . . . . . . . . 13  |-  ( (; 2
2  +  1 )  -  1 )  = ; 2
2
4035, 39eqtri 2424 . . . . . . . . . . . 12  |-  ( K  -  1 )  = ; 2
2
4140oveq1i 6050 . . . . . . . . . . 11  |-  ( ( K  -  1 )  /  2 )  =  (; 2 2  /  2
)
42 eqid 2404 . . . . . . . . . . . . 13  |- ; 1 1  = ; 1 1
43 0nn0 10192 . . . . . . . . . . . . 13  |-  0  e.  NN0
4427mulid1i 9048 . . . . . . . . . . . . . . 15  |-  ( 2  x.  1 )  =  2
4544oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  0 )  =  ( 2  +  0 )
4627addid1i 9209 . . . . . . . . . . . . . 14  |-  ( 2  +  0 )  =  2
4745, 46eqtri 2424 . . . . . . . . . . . . 13  |-  ( ( 2  x.  1 )  +  0 )  =  2
482dec0h 10354 . . . . . . . . . . . . . 14  |-  2  = ; 0 2
4944, 48eqtri 2424 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  = ; 0
2
502, 30, 30, 42, 2, 43, 47, 49decmul2c 10386 . . . . . . . . . . . 12  |-  ( 2  x. ; 1 1 )  = ; 2
2
5130, 30deccl 10352 . . . . . . . . . . . . . 14  |- ; 1 1  e.  NN0
5251nn0cni 10189 . . . . . . . . . . . . 13  |- ; 1 1  e.  CC
5337, 27, 52, 28divmuli 9724 . . . . . . . . . . . 12  |-  ( (; 2
2  /  2 )  = ; 1 1  <->  ( 2  x. ; 1 1 )  = ; 2
2 )
5450, 53mpbir 201 . . . . . . . . . . 11  |-  (; 2 2  /  2
)  = ; 1 1
5541, 54eqtri 2424 . . . . . . . . . 10  |-  ( ( K  -  1 )  /  2 )  = ; 1
1
5619, 1eqtri 2424 . . . . . . . . . . 11  |-  ( K  x.  1 )  = ; 2
3
57 3p2e5 10067 . . . . . . . . . . 11  |-  ( 3  +  2 )  =  5
582, 3, 2, 56, 57decaddi 10382 . . . . . . . . . 10  |-  ( ( K  x.  1 )  +  2 )  = ; 2
5
595, 30, 30, 55, 3, 2, 58, 56decmul2c 10386 . . . . . . . . 9  |-  ( K  x.  ( ( K  -  1 )  / 
2 ) )  = ;; 2 5 3
6029, 59eqtri 2424 . . . . . . . 8  |-  ( ( K  x.  ( K  -  1 ) )  /  2 )  = ;; 2 5 3
6125, 60eqtri 2424 . . . . . . 7  |-  ( ( ( K ^ 2 )  -  K )  /  2 )  = ;; 2 5 3
6261, 6oveq12i 6052 . . . . . 6  |-  ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  =  (;; 2 5 3  / ;; 3 6 5 )
6316, 62breqtrri 4197 . . . . 5  |-  ( log `  2 )  < 
( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)
64 2rp 10573 . . . . . . 7  |-  2  e.  RR+
65 relogcl 20426 . . . . . . 7  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
6664, 65ax-mp 8 . . . . . 6  |-  ( log `  2 )  e.  RR
67 5nn0 10197 . . . . . . . . . . 11  |-  5  e.  NN0
682, 67deccl 10352 . . . . . . . . . 10  |- ; 2 5  e.  NN0
6968, 3deccl 10352 . . . . . . . . 9  |- ;; 2 5 3  e.  NN0
7061, 69eqeltri 2474 . . . . . . . 8  |-  ( ( ( K ^ 2 )  -  K )  /  2 )  e. 
NN0
7170nn0rei 10188 . . . . . . 7  |-  ( ( ( K ^ 2 )  -  K )  /  2 )  e.  RR
72 nndivre 9991 . . . . . . 7  |-  ( ( ( ( ( K ^ 2 )  -  K )  /  2
)  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  e.  RR )
7371, 11, 72mp2an 654 . . . . . 6  |-  ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  e.  RR
7466, 73ltnegi 9527 . . . . 5  |-  ( ( log `  2 )  <  ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N )  <->  -u ( ( ( ( K ^
2 )  -  K
)  /  2 )  /  N )  <  -u ( log `  2
) )
7563, 74mpbi 200 . . . 4  |-  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N )  <  -u ( log `  2
)
7673renegcli 9318 . . . . 5  |-  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N )  e.  RR
7766renegcli 9318 . . . . 5  |-  -u ( log `  2 )  e.  RR
78 eflt 12673 . . . . 5  |-  ( (
-u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N )  e.  RR  /\  -u ( log `  2
)  e.  RR )  ->  ( -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N )  <  -u ( log `  2
)  <->  ( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) )  <  ( exp `  -u ( log `  2
) ) ) )
7976, 77, 78mp2an 654 . . . 4  |-  ( -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  <  -u ( log `  2 )  <->  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
) )  <  ( exp `  -u ( log `  2
) ) )
8075, 79mpbi 200 . . 3  |-  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )  < 
( exp `  -u ( log `  2 ) )
8166recni 9058 . . . . 5  |-  ( log `  2 )  e.  CC
82 efneg 12654 . . . . 5  |-  ( ( log `  2 )  e.  CC  ->  ( exp `  -u ( log `  2
) )  =  ( 1  /  ( exp `  ( log `  2
) ) ) )
8381, 82ax-mp 8 . . . 4  |-  ( exp `  -u ( log `  2
) )  =  ( 1  /  ( exp `  ( log `  2
) ) )
84 reeflog 20428 . . . . . 6  |-  ( 2  e.  RR+  ->  ( exp `  ( log `  2
) )  =  2 )
8564, 84ax-mp 8 . . . . 5  |-  ( exp `  ( log `  2
) )  =  2
8685oveq2i 6051 . . . 4  |-  ( 1  /  ( exp `  ( log `  2 ) ) )  =  ( 1  /  2 )
8783, 86eqtri 2424 . . 3  |-  ( exp `  -u ( log `  2
) )  =  ( 1  /  2 )
8880, 87breqtri 4195 . 2  |-  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )  < 
( 1  /  2
)
8912, 13birthdaylem1 20743 . . . . . . . 8  |-  ( T 
C_  S  /\  S  e.  Fin  /\  ( N  e.  NN  ->  S  =/=  (/) ) )
9089simp2i 967 . . . . . . 7  |-  S  e. 
Fin
9189simp1i 966 . . . . . . 7  |-  T  C_  S
92 ssfi 7288 . . . . . . 7  |-  ( ( S  e.  Fin  /\  T  C_  S )  ->  T  e.  Fin )
9390, 91, 92mp2an 654 . . . . . 6  |-  T  e. 
Fin
94 hashcl 11594 . . . . . 6  |-  ( T  e.  Fin  ->  ( # `
 T )  e. 
NN0 )
9593, 94ax-mp 8 . . . . 5  |-  ( # `  T )  e.  NN0
9695nn0rei 10188 . . . 4  |-  ( # `  T )  e.  RR
9789simp3i 968 . . . . . 6  |-  ( N  e.  NN  ->  S  =/=  (/) )
9811, 97ax-mp 8 . . . . 5  |-  S  =/=  (/)
99 hashnncl 11600 . . . . . 6  |-  ( S  e.  Fin  ->  (
( # `  S )  e.  NN  <->  S  =/=  (/) ) )
10090, 99ax-mp 8 . . . . 5  |-  ( (
# `  S )  e.  NN  <->  S  =/=  (/) )
10198, 100mpbir 201 . . . 4  |-  ( # `  S )  e.  NN
102 nndivre 9991 . . . 4  |-  ( ( ( # `  T
)  e.  RR  /\  ( # `  S )  e.  NN )  -> 
( ( # `  T
)  /  ( # `  S ) )  e.  RR )
10396, 101, 102mp2an 654 . . 3  |-  ( (
# `  T )  /  ( # `  S
) )  e.  RR
104 reefcl 12644 . . . 4  |-  ( -u ( ( ( ( K ^ 2 )  -  K )  / 
2 )  /  N
)  e.  RR  ->  ( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) )  e.  RR )
10576, 104ax-mp 8 . . 3  |-  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )  e.  RR
106 1re 9046 . . . 4  |-  1  e.  RR
107106rehalfcli 10172 . . 3  |-  ( 1  /  2 )  e.  RR
108103, 105, 107lelttri 9156 . 2  |-  ( ( ( ( # `  T
)  /  ( # `  S ) )  <_ 
( exp `  -u (
( ( ( K ^ 2 )  -  K )  /  2
)  /  N ) )  /\  ( exp `  -u ( ( ( ( K ^ 2 )  -  K )  /  2 )  /  N ) )  < 
( 1  /  2
) )  ->  (
( # `  T )  /  ( # `  S
) )  <  (
1  /  2 ) )
10915, 88, 108mp2an 654 1  |-  ( (
# `  T )  /  ( # `  S
) )  <  (
1  /  2 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567    C_ wss 3280   (/)c0 3588   class class class wbr 4172   -->wf 5409   -1-1->wf1 5410   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   5c5 10008   6c6 10009   NN0cn0 10177  ;cdc 10338   RR+crp 10568   ...cfz 10999   ^cexp 11337   #chash 11573   expce 12619   logclog 20405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-tan 12629  df-pi 12630  df-dvds 12808  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-ulm 20246  df-log 20407  df-atan 20660
  Copyright terms: Public domain W3C validator