MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomlem Structured version   Unicode version

Theorem binomlem 13275
Description: Lemma for binom 13276 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
binomlem.1  |-  ( ph  ->  A  e.  CC )
binomlem.2  |-  ( ph  ->  B  e.  CC )
binomlem.3  |-  ( ph  ->  N  e.  NN0 )
binomlem.4  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
Assertion
Ref Expression
binomlem  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N    ph, k
Allowed substitution hint:    ps( k)

Proof of Theorem binomlem
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 binomlem.4 . . . . . 6  |-  ( ps 
->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
21adantl 463 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
32oveq1d 6095 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  A ) )
4 fzfid 11779 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
5 binomlem.1 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
6 fzelp1 11492 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
7 binomlem.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
8 elfzelz 11440 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  ZZ )
9 bccl 12082 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
107, 8, 9syl2an 474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e. 
NN0 )
1110nn0cnd 10626 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e.  CC )
126, 11sylan2 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  _C  k )  e.  CC )
13 fznn0sub 11474 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
14 expcl 11867 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ ( N  -  k )
)  e.  CC )
155, 13, 14syl2an 474 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( N  -  k ) )  e.  CC )
16 binomlem.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
17 elfznn0 11468 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  NN0 )
18 expcl 11867 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
1916, 17, 18syl2an 474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( B ^ k )  e.  CC )
206, 19sylan2 471 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B ^ k )  e.  CC )
2115, 20mulcld 9394 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  e.  CC )
2212, 21mulcld 9394 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
234, 5, 22fsummulc1 13235 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A ) )
245adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2512, 21, 24mulassd 9397 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
267nn0cnd 10626 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
2726adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  CC )
28 1cnd 9390 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
29 elfzelz 11440 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
3029adantl 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
3130zcnd 10736 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
3227, 28, 31addsubd 9728 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  +  1 )  -  k )  =  ( ( N  -  k )  +  1 ) )
3332oveq2d 6096 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( A ^ (
( N  -  k
)  +  1 ) ) )
34 expp1 11856 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  -  k
)  +  1 ) )  =  ( ( A ^ ( N  -  k ) )  x.  A ) )
355, 13, 34syl2an 474 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  -  k )  +  1 ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3633, 35eqtrd 2465 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  =  ( ( A ^
( N  -  k
) )  x.  A
) )
3736oveq1d 6095 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  A )  x.  ( B ^ k
) ) )
3815, 24, 20mul32d 9567 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A ^
( N  -  k
) )  x.  A
)  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
3937, 38eqtrd 2465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) )  x.  A ) )
4039oveq2d 6096 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) )  x.  A
) ) )
4125, 40eqtr4d 2468 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
4241sumeq2dv 13164 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
43 fzssp1 11488 . . . . . . . 8  |-  ( 0 ... N )  C_  ( 0 ... ( N  +  1 ) )
4443a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( N  + 
1 ) ) )
45 fznn0sub 11474 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  +  1 )  -  k )  e.  NN0 )
46 expcl 11867 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( N  + 
1 )  -  k
)  e.  NN0 )  ->  ( A ^ (
( N  +  1 )  -  k ) )  e.  CC )
475, 45, 46syl2an 474 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
4847, 19mulcld 9394 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  e.  CC )
4911, 48mulcld 9394 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
506, 49sylan2 471 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
517adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  N  e.  NN0 )
52 eldifi 3466 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
5352, 8syl 16 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  k  e.  ZZ )
5453adantl 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  k  e.  ZZ )
55 eldifn 3467 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
5655adantl 463 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  -.  k  e.  ( 0 ... N
) )
57 bcval3 12066 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  =  0 )
5851, 54, 56, 57syl3anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( N  _C  k )  =  0 )
5958oveq1d 6095 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
6048mul02d 9555 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
6152, 60sylan2 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( 0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  =  0 )
6259, 61eqtrd 2465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
0 ... N ) ) )  ->  ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  =  0 )
63 fzssuz 11486 . . . . . . . 8  |-  ( 0 ... ( N  + 
1 ) )  C_  ( ZZ>= `  0 )
6463a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  C_  ( ZZ>= ` 
0 ) )
6544, 50, 62, 64sumss 13185 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
6623, 42, 653eqtrd 2469 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
6766adantr 462 . . . 4  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  A )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
683, 67eqtrd 2465 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  A
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
691oveq1d 6095 . . . 4  |-  ( ps 
->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  x.  B ) )
704, 16, 22fsummulc1 13235 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B ) )
71 1zzd 10665 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
72 0z 10645 . . . . . . . . 9  |-  0  e.  ZZ
7372a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
747nn0zd 10733 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
7516adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  CC )
7622, 75mulcld 9394 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  e.  CC )
77 oveq2 6088 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  ( N  _C  k )  =  ( N  _C  (
j  -  1 ) ) )
78 oveq2 6088 . . . . . . . . . . . 12  |-  ( k  =  ( j  - 
1 )  ->  ( N  -  k )  =  ( N  -  ( j  -  1 ) ) )
7978oveq2d 6096 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( A ^ ( N  -  k ) )  =  ( A ^ ( N  -  ( j  -  1 ) ) ) )
80 oveq2 6088 . . . . . . . . . . 11  |-  ( k  =  ( j  - 
1 )  ->  ( B ^ k )  =  ( B ^ (
j  -  1 ) ) )
8179, 80oveq12d 6098 . . . . . . . . . 10  |-  ( k  =  ( j  - 
1 )  ->  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )
8277, 81oveq12d 6098 . . . . . . . . 9  |-  ( k  =  ( j  - 
1 )  ->  (
( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) ) )
8382oveq1d 6095 . . . . . . . 8  |-  ( k  =  ( j  - 
1 )  ->  (
( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B ) )
8471, 73, 74, 76, 83fsumshft 13230 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  - 
1 ) )  x.  ( ( A ^
( N  -  (
j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B ) )
85 oveq1 6087 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
j  -  1 )  =  ( k  - 
1 ) )
8685oveq2d 6096 . . . . . . . . . 10  |-  ( j  =  k  ->  ( N  _C  ( j  - 
1 ) )  =  ( N  _C  (
k  -  1 ) ) )
8785oveq2d 6096 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( N  -  ( j  -  1 ) )  =  ( N  -  ( k  -  1 ) ) )
8887oveq2d 6096 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( A ^ ( N  -  ( j  -  1 ) ) )  =  ( A ^ ( N  -  ( k  -  1 ) ) ) )
8985oveq2d 6096 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( B ^ ( j  - 
1 ) )  =  ( B ^ (
k  -  1 ) ) )
9088, 89oveq12d 6098 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) )  =  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )
9186, 90oveq12d 6098 . . . . . . . . 9  |-  ( j  =  k  ->  (
( N  _C  (
j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  - 
1 ) ) )  x.  ( B ^
( j  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
9291oveq1d 6095 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( N  _C  ( j  -  1 ) )  x.  (
( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ ( j  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
9392cbvsumv 13157 . . . . . . 7  |-  sum_ j  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( j  -  1 ) )  x.  ( ( A ^ ( N  -  ( j  -  1 ) ) )  x.  ( B ^ (
j  -  1 ) ) ) )  x.  B )  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) ( ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )
9484, 93syl6eq 2481 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B ) )
9526adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  N  e.  CC )
96 elfzelz 11440 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ZZ )
9796adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
9897zcnd 10736 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  CC )
99 1cnd 9390 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  1  e.  CC )
10095, 98, 99subsub3d 9737 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  -  ( k  -  1 ) )  =  ( ( N  +  1 )  -  k ) )
101100oveq2d 6096 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( N  -  ( k  -  1 ) ) )  =  ( A ^ (
( N  +  1 )  -  k ) ) )
102101oveq1d 6095 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )
103102oveq2d 6096 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( N  -  ( k  - 
1 ) ) )  x.  ( B ^
( k  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) ) ) )
104103oveq1d 6095 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) ) )  x.  B ) )
105 fzp1ss 11491 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
10672, 105ax-mp 5 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
107106sseli 3340 . . . . . . . . . 10  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
1087adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
1098adantl 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
110 peano2zm 10676 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
111109, 110syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  ZZ )
112 bccl 12082 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( N  _C  ( k  -  1 ) )  e.  NN0 )
113108, 111, 112syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e. 
NN0 )
114113nn0cnd 10626 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
115107, 114sylan2 471 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
116107, 47sylan2 471 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A ^ ( ( N  +  1 )  -  k ) )  e.  CC )
11716adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  B  e.  CC )
118 elfznn 11465 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  ->  k  e.  NN )
119 0p1e1 10421 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
120119oveq1i 6090 . . . . . . . . . . . . . 14  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
121118, 120eleq2s 2525 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  NN )
122121adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  NN )
123 nnm1nn0 10609 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
124122, 123syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
125117, 124expcld 11992 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ ( k  - 
1 ) )  e.  CC )
126116, 125mulcld 9394 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  e.  CC )
127115, 126, 117mulassd 9397 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ (
k  -  1 ) ) )  x.  B
) ) )
128116, 125, 117mulassd 9397 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  (
( B ^ (
k  -  1 ) )  x.  B ) ) )
129 expm1t 11876 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN )  ->  ( B ^ k
)  =  ( ( B ^ ( k  -  1 ) )  x.  B ) )
13016, 121, 129syl2an 474 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B ^ k )  =  ( ( B ^
( k  -  1 ) )  x.  B
) )
131130oveq2d 6096 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( ( B ^
( k  -  1 ) )  x.  B
) ) )
132128, 131eqtr4d 2468 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B )  =  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )
133132oveq2d 6096 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( ( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ ( k  - 
1 ) ) )  x.  B ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
134104, 127, 1333eqtrd 2469 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ ( N  -  ( k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
135134sumeq2dv 13164 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( N  -  (
k  -  1 ) ) )  x.  ( B ^ ( k  - 
1 ) ) ) )  x.  B )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
136106a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( 0  +  1 ) ... ( N  +  1 ) )  C_  ( 0 ... ( N  + 
1 ) ) )
137114, 48mulcld 9394 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
138107, 137sylan2 471 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  e.  CC )
1397adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  NN0 )
140 eldifi 3466 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
141140adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
142141, 8syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  ZZ )
143142, 110syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
k  -  1 )  e.  ZZ )
144 eldifn 3467 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
145144adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  k  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )
14672a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  0  e.  ZZ )
147139nn0zd 10733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  N  e.  ZZ )
148 1zzd 10665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  1  e.  ZZ )
149 fzaddel 11480 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( k  -  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( k  - 
1 )  e.  ( 0 ... N )  <-> 
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
150146, 147, 143, 148, 149syl22anc 1212 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  ( (
k  -  1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
151142zcnd 10736 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  k  e.  CC )
152 ax-1cn 9328 . . . . . . . . . . . . . 14  |-  1  e.  CC
153 npcan 9607 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
154151, 152, 153sylancl 655 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  +  1 )  =  k )
155154eleq1d 2499 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( ( k  - 
1 )  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
156150, 155bitrd 253 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( k  -  1 )  e.  ( 0 ... N )  <->  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
157145, 156mtbird 301 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  -.  ( k  -  1 )  e.  ( 0 ... N ) )
158 bcval3 12066 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ  /\  -.  ( k  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( k  -  1 ) )  =  0 )
159139, 143, 157, 158syl3anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  ( N  _C  ( k  - 
1 ) )  =  0 )
160159oveq1d 6095 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( 0  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
161140, 60sylan2 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
0  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
162160, 161eqtrd 2465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
( 0  +  1 ) ... ( N  +  1 ) ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  0 )
163136, 138, 162, 64sumss 13185 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
16494, 135, 1633eqtrd 2469 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
16570, 164eqtrd 2465 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) )  x.  B )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
16669, 165sylan9eqr 2487 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  B ) ^ N )  x.  B
)  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
16768, 166oveq12d 6098 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( ( A  +  B ) ^ N )  x.  A )  +  ( ( ( A  +  B ) ^ N
)  x.  B ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
1685, 16addcld 9393 . . . . 5  |-  ( ph  ->  ( A  +  B
)  e.  CC )
169168, 7expp1d 11993 . . . 4  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( A  +  B
) ^ N )  x.  ( A  +  B ) ) )
170168, 7expcld 11992 . . . . 5  |-  ( ph  ->  ( ( A  +  B ) ^ N
)  e.  CC )
171170, 5, 16adddid 9398 . . . 4  |-  ( ph  ->  ( ( ( A  +  B ) ^ N )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
172169, 171eqtrd 2465 . . 3  |-  ( ph  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
173172adantr 462 . 2  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  ( ( ( ( A  +  B ) ^ N
)  x.  A )  +  ( ( ( A  +  B ) ^ N )  x.  B ) ) )
174 bcpasc 12081 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
1757, 8, 174syl2an 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  +  ( N  _C  ( k  - 
1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
176175oveq1d 6095 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
17711, 114, 48adddird 9399 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
178176, 177eqtr3d 2467 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
179178sumeq2dv 13164 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
180 fzfid 11779 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  e.  Fin )
181180, 49, 137fsumadd 13199 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) ) )
182179, 181eqtrd 2465 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
183182adantr 462 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^
k ) ) )  +  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A ^ (
( N  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) )
184167, 173, 1833eqtr4d 2475 1  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) ^ ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^
( ( N  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    \ cdif 3313    C_ wss 3316   ` cfv 5406  (class class class)co 6080   CCcc 9268   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275    - cmin 9583   NNcn 10310   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   ...cfz 11424   ^cexp 11849    _C cbc 12062   sum_csu 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148
This theorem is referenced by:  binom  13276
  Copyright terms: Public domain W3C validator