MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom Unicode version

Theorem binom 12564
Description: The binomial theorem:  ( A  +  B ) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  ( ( A ^
k )  x.  ( B ^ ( N  -  k ) ). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 12563. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N

Proof of Theorem binom
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6048 . . . . . 6  |-  ( x  =  0  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
0 ) )
2 oveq2 6048 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
3 oveq1 6047 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  _C  k )  =  ( 0  _C  k ) )
4 oveq1 6047 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  -  k )  =  ( 0  -  k ) )
54oveq2d 6056 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
0  -  k ) ) )
65oveq1d 6055 . . . . . . . . 9  |-  ( x  =  0  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) )
73, 6oveq12d 6058 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
87adantr 452 . . . . . . 7  |-  ( ( x  =  0  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) ) )
92, 8sumeq12dv 12455 . . . . . 6  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
101, 9eqeq12d 2418 . . . . 5  |-  ( x  =  0  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) ) ) )
1110imbi2d 308 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ 0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
12 oveq2 6048 . . . . . 6  |-  ( x  =  n  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
n ) )
13 oveq2 6048 . . . . . . 7  |-  ( x  =  n  ->  (
0 ... x )  =  ( 0 ... n
) )
14 oveq1 6047 . . . . . . . . 9  |-  ( x  =  n  ->  (
x  _C  k )  =  ( n  _C  k ) )
15 oveq1 6047 . . . . . . . . . . 11  |-  ( x  =  n  ->  (
x  -  k )  =  ( n  -  k ) )
1615oveq2d 6056 . . . . . . . . . 10  |-  ( x  =  n  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
n  -  k ) ) )
1716oveq1d 6055 . . . . . . . . 9  |-  ( x  =  n  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) )
1814, 17oveq12d 6058 . . . . . . . 8  |-  ( x  =  n  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
1918adantr 452 . . . . . . 7  |-  ( ( x  =  n  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) ) )
2013, 19sumeq12dv 12455 . . . . . 6  |-  ( x  =  n  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
2112, 20eqeq12d 2418 . . . . 5  |-  ( x  =  n  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) ) )
2221imbi2d 308 . . . 4  |-  ( x  =  n  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
23 oveq2 6048 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
( n  +  1 ) ) )
24 oveq2 6048 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
0 ... x )  =  ( 0 ... (
n  +  1 ) ) )
25 oveq1 6047 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
x  _C  k )  =  ( ( n  +  1 )  _C  k ) )
26 oveq1 6047 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
x  -  k )  =  ( ( n  +  1 )  -  k ) )
2726oveq2d 6056 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
( n  +  1 )  -  k ) ) )
2827oveq1d 6055 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) )
2925, 28oveq12d 6058 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3029adantr 452 . . . . . . 7  |-  ( ( x  =  ( n  +  1 )  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
3124, 30sumeq12dv 12455 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... (
n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3223, 31eqeq12d 2418 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) )
3332imbi2d 308 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
34 oveq2 6048 . . . . . 6  |-  ( x  =  N  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^ N ) )
35 oveq2 6048 . . . . . . 7  |-  ( x  =  N  ->  (
0 ... x )  =  ( 0 ... N
) )
36 oveq1 6047 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  _C  k )  =  ( N  _C  k ) )
37 oveq1 6047 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
x  -  k )  =  ( N  -  k ) )
3837oveq2d 6056 . . . . . . . . . 10  |-  ( x  =  N  ->  ( A ^ ( x  -  k ) )  =  ( A ^ ( N  -  k )
) )
3938oveq1d 6055 . . . . . . . . 9  |-  ( x  =  N  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) )
4036, 39oveq12d 6058 . . . . . . . 8  |-  ( x  =  N  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4140adantr 452 . . . . . . 7  |-  ( ( x  =  N  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) ) )
4235, 41sumeq12dv 12455 . . . . . 6  |-  ( x  =  N  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4334, 42eqeq12d 2418 . . . . 5  |-  ( x  =  N  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) ) )
4443imbi2d 308 . . . 4  |-  ( x  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) ) ) )
45 exp0 11341 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
46 exp0 11341 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
4745, 46oveqan12d 6059 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
48 1t1e1 10082 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
4947, 48syl6eq 2452 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
5049oveq2d 6056 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  ( 1  x.  1 ) )
5150, 48syl6eq 2452 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  1 )
52 0z 10249 . . . . . 6  |-  0  e.  ZZ
53 ax-1cn 9004 . . . . . . 7  |-  1  e.  CC
5451, 53syl6eqel 2492 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )
55 oveq2 6048 . . . . . . . . 9  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
56 0nn0 10192 . . . . . . . . . 10  |-  0  e.  NN0
57 bcn0 11556 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
5856, 57ax-mp 8 . . . . . . . . 9  |-  ( 0  _C  0 )  =  1
5955, 58syl6eq 2452 . . . . . . . 8  |-  ( k  =  0  ->  (
0  _C  k )  =  1 )
60 oveq2 6048 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
0  -  k )  =  ( 0  -  0 ) )
61 0cn 9040 . . . . . . . . . . . 12  |-  0  e.  CC
6261subidi 9327 . . . . . . . . . . 11  |-  ( 0  -  0 )  =  0
6360, 62syl6eq 2452 . . . . . . . . . 10  |-  ( k  =  0  ->  (
0  -  k )  =  0 )
6463oveq2d 6056 . . . . . . . . 9  |-  ( k  =  0  ->  ( A ^ ( 0  -  k ) )  =  ( A ^ 0 ) )
65 oveq2 6048 . . . . . . . . 9  |-  ( k  =  0  ->  ( B ^ k )  =  ( B ^ 0 ) )
6664, 65oveq12d 6058 . . . . . . . 8  |-  ( k  =  0  ->  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
6759, 66oveq12d 6058 . . . . . . 7  |-  ( k  =  0  ->  (
( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) )  =  ( 1  x.  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
6867fsum1 12490 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
6952, 54, 68sylancr 645 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
70 addcl 9028 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
7170exp0d 11472 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  1 )
7251, 69, 713eqtr4rd 2447 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
73 simprl 733 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  A  e.  CC )
74 simprr 734 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  B  e.  CC )
75 simpl 444 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  n  e.  NN0 )
76 id 20 . . . . . . 7  |-  ( ( ( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) )  ->  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )
7773, 74, 75, 76binomlem 12563 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
7877exp31 588 . . . . 5  |-  ( n  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) )  ->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) ) )
7978a2d 24 . . . 4  |-  ( n  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
8011, 22, 33, 44, 72, 79nn0ind 10322 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) ) )
8180impcom 420 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) )
82813impa 1148 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   NN0cn0 10177   ZZcz 10238   ...cfz 10999   ^cexp 11337    _C cbc 11548   sum_csu 12434
This theorem is referenced by:  binom1p  12565  efaddlem  12650  basellem3  20818  jm2.22  26956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435
  Copyright terms: Public domain W3C validator