![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimpri | Structured version Visualization version Unicode version |
Description: Infer a converse implication from a logical equivalence. Inference associated with biimpr 203. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 207 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | biimpi 199 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |