MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianirOLD Structured version   Unicode version

Theorem bianirOLD 976
Description: Obsolete version of bianir 975 as of 17-Aug-2020. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bianirOLD  |-  ( (
ph  /\  ( ps  <->  ph ) )  ->  ps )

Proof of Theorem bianirOLD
StepHypRef Expression
1 bicom 203 . 2  |-  ( ( ps  <->  ph )  <->  ( ph  <->  ps ) )
2 biimp 196 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
32impcom 431 . 2  |-  ( (
ph  /\  ( ph  <->  ps ) )  ->  ps )
41, 3sylan2b 477 1  |-  ( (
ph  /\  ( ps  <->  ph ) )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator