MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianfd Structured version   Unicode version

Theorem bianfd 917
Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
Hypothesis
Ref Expression
bianfd.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
bianfd  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )

Proof of Theorem bianfd
StepHypRef Expression
1 bianfd.1 . 2  |-  ( ph  ->  -.  ps )
21intnanrd 908 . 2  |-  ( ph  ->  -.  ( ps  /\  ch ) )
31, 22falsed 351 1  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  eueq2  3240  eueq3  3241
  Copyright terms: Public domain W3C validator