MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Unicode version

Theorem bi2anan9r 874
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1  |-  ( ph  ->  ( ps  <->  ch )
)
bi2an9.2  |-  ( th 
->  ( ta  <->  et )
)
Assertion
Ref Expression
bi2anan9r  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 bi2an9.2 . . 3  |-  ( th 
->  ( ta  <->  et )
)
31, 2bi2anan9 873 . 2  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
43ancoms 453 1  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  efrn2lp  4870  ltsosr  9488  seqf1olem2  12150  seqf1o  12151  pcval  14380  usg2wlkeq  24835  fneval  30375  prtlem5  30802  rmydioph  31160  wepwsolem  31191  aomclem8  31211
  Copyright terms: Public domain W3C validator