Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Visualization version   Unicode version

Theorem bfplem2 32219
Description: Lemma for bfp 32220. Using the point found in bfplem1 32218, we show that this convergent point is a fixed point of  F. Since for any positive  x, the sequence  G is in  B ( x  /  2 ,  P ) for all  k  e.  (
ZZ>= `  j ) (where  P  =  ( ( ~~> t `  J ) `  G
)), we have  D ( G ( j  +  1 ) ,  F ( P ) )  <_  D ( G ( j ) ,  P
)  <  x  / 
2 and  D ( G ( j  +  1 ) ,  P )  <  x  /  2, so  F ( P ) is in every neighborhood of  P and  P is a fixed point of  F. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
bfp.8  |-  J  =  ( MetOpen `  D )
bfp.9  |-  ( ph  ->  A  e.  X )
bfp.10  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
Assertion
Ref Expression
bfplem2  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
Distinct variable groups:    x, y,
z, D    x, G, y, z    x, J, y, z    ph, x, y    x, F, y, z    x, K, y    x, X, y, z
Allowed substitution hints:    ph( z)    A( x, y, z)    K( z)

Proof of Theorem bfplem2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 22334 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 17 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 21427 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
5 bfp.8 . . . . 5  |-  J  =  ( MetOpen `  D )
65mopntopon 21532 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
73, 4, 63syl 18 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 bfp.3 . . . 4  |-  ( ph  ->  X  =/=  (/) )
9 bfp.4 . . . 4  |-  ( ph  ->  K  e.  RR+ )
10 bfp.5 . . . 4  |-  ( ph  ->  K  <  1 )
11 bfp.6 . . . 4  |-  ( ph  ->  F : X --> X )
12 bfp.7 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
13 bfp.9 . . . 4  |-  ( ph  ->  A  e.  X )
14 bfp.10 . . . 4  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 32218 . . 3  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
16 lmcl 20390 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  G
( ~~> t `  J
) ( ( ~~> t `  J ) `  G
) )  ->  (
( ~~> t `  J
) `  G )  e.  X )
177, 15, 16syl2anc 673 . 2  |-  ( ph  ->  ( ( ~~> t `  J ) `  G
)  e.  X )
183adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  D  e.  ( Met `  X ) )
1918, 4syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
20 nnuz 11218 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
21 1zzd 10992 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  ZZ )
22 eqidd 2472 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN )  ->  ( G `  k )  =  ( G `  k ) )
2315adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  G ( ~~> t `  J )
( ( ~~> t `  J ) `  G
) )
24 rphalfcl 11350 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
2524adantl 473 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
265, 19, 20, 21, 22, 23, 25lmmcvg 22309 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) ) )
27 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( G `  k
)  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( G `
 k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )
2827ralimi 2796 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  e.  X  /\  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) )
29 nnz 10983 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  ZZ )
3029adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  j  e.  ZZ )
31 uzid 11197 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
32 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  ( G `  k )  =  ( G `  j ) )
3332oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) ) )
3433breq1d 4405 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
3534rspcv 3132 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  ->  ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
3630, 31, 353syl 18 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
3730, 31syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  j  e.  ( ZZ>= `  j )
)
38 peano2uz 11235 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( j  +  1 )  e.  ( ZZ>= `  j )
)
39 fveq2 5879 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( j  +  1 )  ->  ( G `  k )  =  ( G `  ( j  +  1 ) ) )
4039oveq1d 6323 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( j  +  1 )  ->  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( G `
 ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) ) )
4140breq1d 4405 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( j  +  1 )  ->  (
( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( G `  ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4241rspcv 3132 . . . . . . . . . . . . . . 15  |-  ( ( j  +  1 )  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  ->  ( ( G `
 ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4337, 38, 423syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( G `  (
j  +  1 ) ) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
44 1zzd 10992 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  ZZ )
4520, 14, 44, 13, 11algrp1 14612 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN )  ->  ( G `
 ( j  +  1 ) )  =  ( F `  ( G `  j )
) )
4645adantlr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( G `  ( j  +  1 ) )  =  ( F `  ( G `  j ) ) )
4746oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  (
j  +  1 ) ) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )
4847breq1d 4405 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( G `  ( j  +  1 ) ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4943, 48sylibd 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
5036, 49jcad 542 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  /\  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) ) )
513ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  D  e.  ( Met `  X
) )
5220, 14, 44, 13, 11algrf 14611 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : NN --> X )
5352adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  G : NN
--> X )
5453ffvelrnda 6037 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( G `  j )  e.  X )
5517ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ~~> t `  J
) `  G )  e.  X )
56 metcl 21425 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  j )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
5751, 54, 55, 56syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
5811ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  F : X --> X )
5958, 54ffvelrnd 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( F `  ( G `  j ) )  e.  X )
60 metcl 21425 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  j ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
6151, 59, 55, 60syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
62 rpre 11331 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e.  RR )
6362ad2antlr 741 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  x  e.  RR )
64 lt2halves 10870 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  /\  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )  ->  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  < 
x ) )
6557, 61, 63, 64syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  /\  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )  ->  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  < 
x ) )
6611, 17ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  (
( ~~> t `  J
) `  G )
)  e.  X )
67 metcl 21425 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
683, 66, 17, 67syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR )
6968ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
7058, 55ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X )
71 metcl 21425 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  j ) )  e.  X  /\  ( F `
 ( ( ~~> t `  J ) `  G
) )  e.  X
)  ->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  e.  RR )
7251, 59, 70, 71syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
7372, 61readdcld 9688 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( F `  ( G `  j ) ) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) )  e.  RR )
7457, 61readdcld 9688 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  +  ( ( F `  ( G `
 j ) ) D ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
75 mettri2 21434 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  (
( F `  ( G `  j )
)  e.  X  /\  ( F `  ( ( ~~> t `  J ) `
 G ) )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X ) )  -> 
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) ) )
7651, 59, 70, 55, 75syl13anc 1294 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  ( ( ( F `  ( G `
 j ) ) D ( F `  ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) ) )
779rpred 11364 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  RR )
7877ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  K  e.  RR )
7978, 57remulcld 9689 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
8054, 55jca 541 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
)  e.  X  /\  ( ( ~~> t `  J ) `  G
)  e.  X ) )
8112ralrimivva 2814 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
8281ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
83 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( G `  j )  ->  ( F `  x )  =  ( F `  ( G `  j ) ) )
8483oveq1d 6323 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( G `  j )  ->  (
( F `  x
) D ( F `
 y ) )  =  ( ( F `
 ( G `  j ) ) D ( F `  y
) ) )
85 oveq1 6315 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( G `  j )  ->  (
x D y )  =  ( ( G `
 j ) D y ) )
8685oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( G `  j )  ->  ( K  x.  ( x D y ) )  =  ( K  x.  ( ( G `  j ) D y ) ) )
8784, 86breq12d 4408 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( G `  j )  ->  (
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) )  <->  ( ( F `  ( G `  j ) ) D ( F `  y
) )  <_  ( K  x.  ( ( G `  j ) D y ) ) ) )
88 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( F `  y )  =  ( F `  ( ( ~~> t `  J ) `
 G ) ) )
8988oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( F `  ( G `  j ) ) D ( F `  y
) )  =  ( ( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) ) )
90 oveq2 6316 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( G `  j ) D y )  =  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
9190oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( K  x.  ( ( G `  j ) D y ) )  =  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) )
9289, 91breq12d 4408 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( (
( F `  ( G `  j )
) D ( F `
 y ) )  <_  ( K  x.  ( ( G `  j ) D y ) )  <->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  <_  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) ) )
9387, 92rspc2v 3147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  j
)  e.  X  /\  ( ( ~~> t `  J ) `  G
)  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) )  ->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  <_  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) ) )
9480, 82, 93sylc 61 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  <_ 
( K  x.  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) ) ) )
95 1red 9676 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  1  e.  RR )
96 metge0 21438 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  j )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X )  ->  0  <_  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
9751, 54, 55, 96syl3anc 1292 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  0  <_  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
98 1re 9660 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
99 ltle 9740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( K  <  1  ->  K  <_  1 ) )
10077, 98, 99sylancl 675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  <  1  ->  K  <_  1 ) )
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  <_  1 )
102101ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  K  <_  1 )
10378, 95, 57, 97, 102lemul1ad 10568 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  <_ 
( 1  x.  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) ) ) )
10457recnd 9687 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  CC )
105104mulid2d 9679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
1  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  =  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
106103, 105breqtrd 4420 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  <_ 
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
10772, 79, 57, 94, 106letrd 9809 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  <_ 
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
10872, 57, 61, 107leadd1dd 10248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( F `  ( G `  j ) ) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) )  <_  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) ) )
10969, 73, 74, 76, 108letrd 9809 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  ( ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) ) )
110 lelttr 9742 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( F `  ( ( ~~> t `  J ) `
 G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  +  ( ( F `  ( G `
 j ) ) D ( ( ~~> t `  J ) `  G
) ) )  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11169, 74, 63, 110syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
112109, 111mpand 689 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x  -> 
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11350, 65, 1123syld 56 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <  x ) )
11428, 113syl5 32 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
115114rexlimdva 2871 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11626, 115mpd 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <  x
)
117 ltle 9740 . . . . . . . . 9  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  x  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x  ->  ( ( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  x ) )
11868, 62, 117syl2an 485 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <  x  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  x ) )
119116, 118mpd 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  x
)
12062adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
121120recnd 9687 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
122121addid2d 9852 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 0  +  x )  =  x )
123119, 122breqtrrd 4422 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  (
0  +  x ) )
124123ralrimiva 2809 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) )
125 0re 9661 . . . . . 6  |-  0  e.  RR
126 alrple 11522 . . . . . 6  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  <->  A. x  e.  RR+  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) ) )
12768, 125, 126sylancl 675 . . . . 5  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  <->  A. x  e.  RR+  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) ) )
128124, 127mpbird 240 . . . 4  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0 )
129 metge0 21438 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  0  <_  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) )
1303, 66, 17, 129syl3anc 1292 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) ) )
131 letri3 9737 . . . . 5  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  /\  0  <_  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) ) ) )
13268, 125, 131sylancl 675 . . . 4  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  /\  0  <_  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) ) ) )
133128, 130, 132mpbir2and 936 . . 3  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0 )
134 meteq0 21432 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  ( F `  ( ( ~~> t `  J ) `  G ) )  =  ( ( ~~> t `  J ) `  G
) ) )
1353, 66, 17, 134syl3anc 1292 . . 3  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  ( F `  ( ( ~~> t `  J ) `  G ) )  =  ( ( ~~> t `  J ) `  G
) ) )
136133, 135mpbid 215 . 2  |-  ( ph  ->  ( F `  (
( ~~> t `  J
) `  G )
)  =  ( ( ~~> t `  J ) `
 G ) )
137 fveq2 5879 . . . 4  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  ( F `  z )  =  ( F `  ( ( ~~> t `  J ) `
 G ) ) )
138 id 22 . . . 4  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  z  =  ( ( ~~> t `  J ) `  G
) )
139137, 138eqeq12d 2486 . . 3  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( F `  z )  =  z  <->  ( F `  ( ( ~~> t `  J ) `  G
) )  =  ( ( ~~> t `  J
) `  G )
) )
140139rspcev 3136 . 2  |-  ( ( ( ( ~~> t `  J ) `  G
)  e.  X  /\  ( F `  ( ( ~~> t `  J ) `
 G ) )  =  ( ( ~~> t `  J ) `  G
) )  ->  E. z  e.  X  ( F `  z )  =  z )
14117, 136, 140syl2anc 673 1  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   (/)c0 3722   {csn 3959   class class class wbr 4395    X. cxp 4837    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308   1stc1st 6810   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631   2c2 10681   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325    seqcseq 12251   *Metcxmt 19032   Metcme 19033   MetOpencmopn 19037  TopOnctopon 19995   ~~> tclm 20319   CMetcms 22302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-rest 15399  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-top 19998  df-bases 19999  df-topon 20000  df-ntr 20112  df-nei 20191  df-lm 20322  df-haus 20408  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-cfil 22303  df-cau 22304  df-cmet 22305
This theorem is referenced by:  bfp  32220
  Copyright terms: Public domain W3C validator