Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Unicode version

Theorem bfplem2 31614
Description: Lemma for bfp 31615. Using the point found in bfplem1 31613, we show that this convergent point is a fixed point of  F. Since for any positive  x, the sequence  G is in  B ( x  /  2 ,  P ) for all  k  e.  (
ZZ>= `  j ) (where  P  =  ( ( ~~> t `  J ) `  G
)), we have  D ( G ( j  +  1 ) ,  F ( P ) )  <_  D ( G ( j ) ,  P
)  <  x  / 
2 and  D ( G ( j  +  1 ) ,  P )  <  x  /  2, so  F ( P ) is in every neighborhood of  P and  P is a fixed point of  F. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
bfp.8  |-  J  =  ( MetOpen `  D )
bfp.9  |-  ( ph  ->  A  e.  X )
bfp.10  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
Assertion
Ref Expression
bfplem2  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
Distinct variable groups:    x, y,
z, D    x, G, y, z    x, J, y, z    ph, x, y    x, F, y, z    x, K, y    x, X, y, z
Allowed substitution hints:    ph( z)    A( x, y, z)    K( z)

Proof of Theorem bfplem2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 22019 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 17 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 21131 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
5 bfp.8 . . . . 5  |-  J  =  ( MetOpen `  D )
65mopntopon 21236 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
73, 4, 63syl 18 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 bfp.3 . . . 4  |-  ( ph  ->  X  =/=  (/) )
9 bfp.4 . . . 4  |-  ( ph  ->  K  e.  RR+ )
10 bfp.5 . . . 4  |-  ( ph  ->  K  <  1 )
11 bfp.6 . . . 4  |-  ( ph  ->  F : X --> X )
12 bfp.7 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
13 bfp.9 . . . 4  |-  ( ph  ->  A  e.  X )
14 bfp.10 . . . 4  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 31613 . . 3  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
16 lmcl 20093 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  G
( ~~> t `  J
) ( ( ~~> t `  J ) `  G
) )  ->  (
( ~~> t `  J
) `  G )  e.  X )
177, 15, 16syl2anc 661 . 2  |-  ( ph  ->  ( ( ~~> t `  J ) `  G
)  e.  X )
183adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  D  e.  ( Met `  X ) )
1918, 4syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
20 nnuz 11164 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
21 1zzd 10938 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  ZZ )
22 eqidd 2405 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN )  ->  ( G `  k )  =  ( G `  k ) )
2315adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  G ( ~~> t `  J )
( ( ~~> t `  J ) `  G
) )
24 rphalfcl 11292 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
2524adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
265, 19, 20, 21, 22, 23, 25lmmcvg 21994 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) ) )
27 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( G `  k
)  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( G `
 k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )
2827ralimi 2799 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  e.  X  /\  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) )
29 nnz 10929 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  ZZ )
3029adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  j  e.  ZZ )
31 uzid 11143 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
32 fveq2 5851 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  ( G `  k )  =  ( G `  j ) )
3332oveq1d 6295 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) ) )
3433breq1d 4407 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
3534rspcv 3158 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  ->  ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
3630, 31, 353syl 18 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
3730, 31syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  j  e.  ( ZZ>= `  j )
)
38 peano2uz 11182 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( j  +  1 )  e.  ( ZZ>= `  j )
)
39 fveq2 5851 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( j  +  1 )  ->  ( G `  k )  =  ( G `  ( j  +  1 ) ) )
4039oveq1d 6295 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( j  +  1 )  ->  (
( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( G `
 ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) ) )
4140breq1d 4407 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( j  +  1 )  ->  (
( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( G `  ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4241rspcv 3158 . . . . . . . . . . . . . . 15  |-  ( ( j  +  1 )  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  k ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  ->  ( ( G `
 ( j  +  1 ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4337, 38, 423syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( G `  (
j  +  1 ) ) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
44 1zzd 10938 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  ZZ )
4520, 14, 44, 13, 11algrp1 14414 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN )  ->  ( G `
 ( j  +  1 ) )  =  ( F `  ( G `  j )
) )
4645adantlr 715 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( G `  ( j  +  1 ) )  =  ( F `  ( G `  j ) ) )
4746oveq1d 6295 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  (
j  +  1 ) ) D ( ( ~~> t `  J ) `
 G ) )  =  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )
4847breq1d 4407 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( G `  ( j  +  1 ) ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  <->  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) ) )
4943, 48sylibd 216 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) )
5036, 49jcad 533 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 )  /\  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 ) ) ) )
513ad2antrr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  D  e.  ( Met `  X
) )
5220, 14, 44, 13, 11algrf 14413 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : NN --> X )
5352adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  G : NN
--> X )
5453ffvelrnda 6011 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( G `  j )  e.  X )
5517ad2antrr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ~~> t `  J
) `  G )  e.  X )
56 metcl 21129 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  j )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
5751, 54, 55, 56syl3anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
5811ad2antrr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  F : X --> X )
5958, 54ffvelrnd 6012 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( F `  ( G `  j ) )  e.  X )
60 metcl 21129 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  j ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
6151, 59, 55, 60syl3anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
62 rpre 11273 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e.  RR )
6362ad2antlr 727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  x  e.  RR )
64 lt2halves 10816 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  /\  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )  ->  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  < 
x ) )
6557, 61, 63, 64syl3anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 )  /\  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) )  <  (
x  /  2 ) )  ->  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  < 
x ) )
6611, 17ffvelrnd 6012 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  (
( ~~> t `  J
) `  G )
)  e.  X )
67 metcl 21129 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
683, 66, 17, 67syl3anc 1232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR )
6968ad2antrr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  e.  RR )
7058, 55ffvelrnd 6012 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X )
71 metcl 21129 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  j ) )  e.  X  /\  ( F `
 ( ( ~~> t `  J ) `  G
) )  e.  X
)  ->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  e.  RR )
7251, 59, 70, 71syl3anc 1232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
7372, 61readdcld 9655 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( F `  ( G `  j ) ) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) )  e.  RR )
7457, 61readdcld 9655 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  +  ( ( F `  ( G `
 j ) ) D ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
75 mettri2 21138 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  (
( F `  ( G `  j )
)  e.  X  /\  ( F `  ( ( ~~> t `  J ) `
 G ) )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X ) )  -> 
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) ) )
7651, 59, 70, 55, 75syl13anc 1234 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  ( ( ( F `  ( G `
 j ) ) D ( F `  ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) ) )
779rpred 11306 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  RR )
7877ad2antrr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  K  e.  RR )
7978, 57remulcld 9656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  e.  RR )
8054, 55jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
)  e.  X  /\  ( ( ~~> t `  J ) `  G
)  e.  X ) )
8112ralrimivva 2827 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
8281ad2antrr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
83 fveq2 5851 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( G `  j )  ->  ( F `  x )  =  ( F `  ( G `  j ) ) )
8483oveq1d 6295 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( G `  j )  ->  (
( F `  x
) D ( F `
 y ) )  =  ( ( F `
 ( G `  j ) ) D ( F `  y
) ) )
85 oveq1 6287 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( G `  j )  ->  (
x D y )  =  ( ( G `
 j ) D y ) )
8685oveq2d 6296 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( G `  j )  ->  ( K  x.  ( x D y ) )  =  ( K  x.  ( ( G `  j ) D y ) ) )
8784, 86breq12d 4410 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( G `  j )  ->  (
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) )  <->  ( ( F `  ( G `  j ) ) D ( F `  y
) )  <_  ( K  x.  ( ( G `  j ) D y ) ) ) )
88 fveq2 5851 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( F `  y )  =  ( F `  ( ( ~~> t `  J ) `
 G ) ) )
8988oveq2d 6296 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( F `  ( G `  j ) ) D ( F `  y
) )  =  ( ( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) ) )
90 oveq2 6288 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( G `  j ) D y )  =  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
9190oveq2d 6296 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( K  x.  ( ( G `  j ) D y ) )  =  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) )
9289, 91breq12d 4410 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( ~~> t `  J ) `  G
)  ->  ( (
( F `  ( G `  j )
) D ( F `
 y ) )  <_  ( K  x.  ( ( G `  j ) D y ) )  <->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  <_  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) ) )
9387, 92rspc2v 3171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  j
)  e.  X  /\  ( ( ~~> t `  J ) `  G
)  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) )  ->  ( ( F `  ( G `  j ) ) D ( F `  (
( ~~> t `  J
) `  G )
) )  <_  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) ) ) )
9480, 82, 93sylc 61 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  <_ 
( K  x.  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) ) ) )
95 1red 9643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  1  e.  RR )
96 metge0 21142 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  j )  e.  X  /\  (
( ~~> t `  J
) `  G )  e.  X )  ->  0  <_  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
9751, 54, 55, 96syl3anc 1232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  0  <_  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
98 1re 9627 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
99 ltle 9706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( K  <  1  ->  K  <_  1 ) )
10077, 98, 99sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  <  1  ->  K  <_  1 ) )
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  <_  1 )
102101ad2antrr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  K  <_  1 )
10378, 95, 57, 97, 102lemul1ad 10527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  <_ 
( 1  x.  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) ) ) )
10457recnd 9654 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  e.  CC )
105104mulid2d 9646 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
1  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  =  ( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
106103, 105breqtrd 4421 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( K  x.  ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) ) )  <_ 
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
10772, 79, 57, 94, 106letrd 9775 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  ( G `  j )
) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  <_ 
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
) )
10872, 57, 61, 107leadd1dd 10208 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( F `  ( G `  j ) ) D ( F `
 ( ( ~~> t `  J ) `  G
) ) )  +  ( ( F `  ( G `  j ) ) D ( ( ~~> t `  J ) `
 G ) ) )  <_  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) ) )
10969, 73, 74, 76, 108letrd 9775 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  ( ( ( G `  j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) ) )
110 lelttr 9708 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( F `  ( ( ~~> t `  J ) `
 G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  (
( ( G `  j ) D ( ( ~~> t `  J
) `  G )
)  +  ( ( F `  ( G `
 j ) ) D ( ( ~~> t `  J ) `  G
) ) )  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11169, 74, 63, 110syl3anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( (
( G `  j
) D ( ( ~~> t `  J ) `
 G ) )  +  ( ( F `
 ( G `  j ) ) D ( ( ~~> t `  J ) `  G
) ) )  /\  ( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
112109, 111mpand 675 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( G `
 j ) D ( ( ~~> t `  J ) `  G
) )  +  ( ( F `  ( G `  j )
) D ( ( ~~> t `  J ) `
 G ) ) )  <  x  -> 
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11350, 65, 1123syld 56 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
) D ( ( ~~> t `  J ) `
 G ) )  <  ( x  / 
2 )  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <  x ) )
11428, 113syl5 32 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
115114rexlimdva 2898 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  e.  X  /\  ( ( G `  k ) D ( ( ~~> t `  J
) `  G )
)  <  ( x  /  2 ) )  ->  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x )
)
11626, 115mpd 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <  x
)
117 ltle 9706 . . . . . . . . 9  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  x  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <  x  ->  ( ( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  x ) )
11868, 62, 117syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <  x  ->  (
( F `  (
( ~~> t `  J
) `  G )
) D ( ( ~~> t `  J ) `
 G ) )  <_  x ) )
119116, 118mpd 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  x
)
12062adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
121120recnd 9654 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
122121addid2d 9817 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 0  +  x )  =  x )
123119, 122breqtrrd 4423 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) )  <_  (
0  +  x ) )
124123ralrimiva 2820 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) )
125 0re 9628 . . . . . 6  |-  0  e.  RR
126 alrple 11460 . . . . . 6  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  <->  A. x  e.  RR+  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) ) )
12768, 125, 126sylancl 662 . . . . 5  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  <->  A. x  e.  RR+  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  ( 0  +  x ) ) )
128124, 127mpbird 234 . . . 4  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0 )
129 metge0 21142 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  0  <_  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) )
1303, 66, 17, 129syl3anc 1232 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( ( ~~> t `  J ) `  G ) ) D ( ( ~~> t `  J ) `  G
) ) )
131 letri3 9703 . . . . 5  |-  ( ( ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  /\  0  <_  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) ) ) )
13268, 125, 131sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  <_  0  /\  0  <_  ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
) ) ) )
133128, 130, 132mpbir2and 925 . . 3  |-  ( ph  ->  ( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0 )
134 meteq0 21136 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( ~~> t `  J ) `  G ) )  e.  X  /\  ( ( ~~> t `  J ) `
 G )  e.  X )  ->  (
( ( F `  ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  ( F `  ( ( ~~> t `  J ) `  G ) )  =  ( ( ~~> t `  J ) `  G
) ) )
1353, 66, 17, 134syl3anc 1232 . . 3  |-  ( ph  ->  ( ( ( F `
 ( ( ~~> t `  J ) `  G
) ) D ( ( ~~> t `  J
) `  G )
)  =  0  <->  ( F `  ( ( ~~> t `  J ) `  G ) )  =  ( ( ~~> t `  J ) `  G
) ) )
136133, 135mpbid 212 . 2  |-  ( ph  ->  ( F `  (
( ~~> t `  J
) `  G )
)  =  ( ( ~~> t `  J ) `
 G ) )
137 fveq2 5851 . . . 4  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  ( F `  z )  =  ( F `  ( ( ~~> t `  J ) `
 G ) ) )
138 id 23 . . . 4  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  z  =  ( ( ~~> t `  J ) `  G
) )
139137, 138eqeq12d 2426 . . 3  |-  ( z  =  ( ( ~~> t `  J ) `  G
)  ->  ( ( F `  z )  =  z  <->  ( F `  ( ( ~~> t `  J ) `  G
) )  =  ( ( ~~> t `  J
) `  G )
) )
140139rspcev 3162 . 2  |-  ( ( ( ( ~~> t `  J ) `  G
)  e.  X  /\  ( F `  ( ( ~~> t `  J ) `
 G ) )  =  ( ( ~~> t `  J ) `  G
) )  ->  E. z  e.  X  ( F `  z )  =  z )
14117, 136, 140syl2anc 661 1  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757   (/)c0 3740   {csn 3974   class class class wbr 4397    X. cxp 4823    o. ccom 4829   -->wf 5567   ` cfv 5571  (class class class)co 6280   1stc1st 6784   RRcr 9523   0cc0 9524   1c1 9525    + caddc 9527    x. cmul 9529    < clt 9660    <_ cle 9661    / cdiv 10249   NNcn 10578   2c2 10628   ZZcz 10907   ZZ>=cuz 11129   RR+crp 11267    seqcseq 12153   *Metcxmt 18725   Metcme 18726   MetOpencmopn 18730  TopOnctopon 19689   ~~> tclm 20022   CMetcms 21987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-pm 7462  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-sup 7937  df-oi 7971  df-card 8354  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-n0 10839  df-z 10908  df-uz 11130  df-q 11230  df-rp 11268  df-xneg 11373  df-xadd 11374  df-xmul 11375  df-ico 11590  df-icc 11591  df-fz 11729  df-fzo 11857  df-fl 11968  df-seq 12154  df-exp 12213  df-hash 12455  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-clim 13462  df-rlim 13463  df-sum 13660  df-rest 15039  df-topgen 15060  df-psmet 18733  df-xmet 18734  df-met 18735  df-bl 18736  df-mopn 18737  df-fbas 18738  df-fg 18739  df-top 19693  df-bases 19695  df-topon 19696  df-ntr 19815  df-nei 19894  df-lm 20025  df-haus 20111  df-fil 20641  df-fm 20733  df-flim 20734  df-flf 20735  df-cfil 21988  df-cau 21989  df-cmet 21990
This theorem is referenced by:  bfp  31615
  Copyright terms: Public domain W3C validator