Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Unicode version

Theorem bfp 28720
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if  F has two fixed points, then the distance between them is less than  K times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
Assertion
Ref Expression
bfp  |-  ( ph  ->  E! z  e.  X  ( F `  z )  =  z )
Distinct variable groups:    x, y,
z, D    ph, x, y   
x, F, y, z   
x, K, y    x, X, y, z
Allowed substitution hints:    ph( z)    K( z)

Proof of Theorem bfp
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4  |-  ( ph  ->  X  =/=  (/) )
2 n0 3644 . . . 4  |-  ( X  =/=  (/)  <->  E. w  w  e.  X )
31, 2sylib 196 . . 3  |-  ( ph  ->  E. w  w  e.  X )
4 bfp.2 . . . . 5  |-  ( ph  ->  D  e.  ( CMet `  X ) )
54adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  D  e.  ( CMet `  X
) )
61adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  X  =/=  (/) )
7 bfp.4 . . . . 5  |-  ( ph  ->  K  e.  RR+ )
87adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  K  e.  RR+ )
9 bfp.5 . . . . 5  |-  ( ph  ->  K  <  1 )
109adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  K  <  1 )
11 bfp.6 . . . . 5  |-  ( ph  ->  F : X --> X )
1211adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  F : X --> X )
13 bfp.7 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
1413adantlr 714 . . . 4  |-  ( ( ( ph  /\  w  e.  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
15 eqid 2441 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
16 simpr 461 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  w  e.  X )
17 eqid 2441 . . . 4  |-  seq 1
( ( F  o.  1st ) ,  ( NN 
X.  { w }
) )  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  {
w } ) )
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 28719 . . 3  |-  ( (
ph  /\  w  e.  X )  ->  E. z  e.  X  ( F `  z )  =  z )
193, 18exlimddv 1692 . 2  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
20 oveq12 6098 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  x  /\  ( F `  y )  =  y )  -> 
( ( F `  x ) D ( F `  y ) )  =  ( x D y ) )
2120adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( F `
 x ) D ( F `  y
) )  =  ( x D y ) )
2213adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( F `
 x ) D ( F `  y
) )  <_  ( K  x.  ( x D y ) ) )
2321, 22eqbrtrrd 4312 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  <_  ( K  x.  ( x D y ) ) )
24 cmetmet 20795 . . . . . . . . . . . . . 14  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
254, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( Met `  X ) )
2625ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  D  e.  ( Met `  X ) )
27 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  x  e.  X
)
28 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  y  e.  X
)
29 metcl 19905 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
3026, 27, 28, 29syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  e.  RR )
317rpred 11025 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  RR )
3231ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  K  e.  RR )
3332, 30remulcld 9412 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( K  x.  ( x D y ) )  e.  RR )
3430, 33suble0d 9928 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( ( x D y )  -  ( K  x.  ( x D y ) ) )  <_ 
0  <->  ( x D y )  <_  ( K  x.  ( x D y ) ) ) )
3523, 34mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  -  ( K  x.  (
x D y ) ) )  <_  0
)
36 ax-1cn 9338 . . . . . . . . . . . 12  |-  1  e.  CC
3736a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  1  e.  CC )
3832recnd 9410 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  K  e.  CC )
3930recnd 9410 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  e.  CC )
4037, 38, 39subdird 9799 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  =  ( ( 1  x.  (
x D y ) )  -  ( K  x.  ( x D y ) ) ) )
4139mulid2d 9402 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  x.  ( x D y ) )  =  ( x D y ) )
4241oveq1d 6104 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  x.  ( x D y ) )  -  ( K  x.  (
x D y ) ) )  =  ( ( x D y )  -  ( K  x.  ( x D y ) ) ) )
4340, 42eqtrd 2473 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  =  ( ( x D y )  -  ( K  x.  ( x D y ) ) ) )
44 1re 9383 . . . . . . . . . . . . 13  |-  1  e.  RR
45 resubcl 9671 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  K  e.  RR )  ->  ( 1  -  K
)  e.  RR )
4644, 31, 45sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  K
)  e.  RR )
4746ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  -  K )  e.  RR )
4847recnd 9410 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  -  K )  e.  CC )
4948mul01d 9566 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  0 )  =  0 )
5035, 43, 493brtr4d 4320 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) )
51 0re 9384 . . . . . . . . . 10  |-  0  e.  RR
5251a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  e.  RR )
53 posdif 9830 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( K  <  1  <->  0  <  ( 1  -  K ) ) )
5431, 44, 53sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( K  <  1  <->  0  <  ( 1  -  K ) ) )
559, 54mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  -  K ) )
5655ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  <  (
1  -  K ) )
57 lemul2 10180 . . . . . . . . 9  |-  ( ( ( x D y )  e.  RR  /\  0  e.  RR  /\  (
( 1  -  K
)  e.  RR  /\  0  <  ( 1  -  K ) ) )  ->  ( ( x D y )  <_ 
0  <->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) ) )
5830, 52, 47, 56, 57syl112anc 1222 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  <_ 
0  <->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) ) )
5950, 58mpbird 232 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  <_  0
)
60 metge0 19918 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  0  <_  ( x D y ) )
6126, 27, 28, 60syl3anc 1218 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  <_  (
x D y ) )
62 letri3 9458 . . . . . . . 8  |-  ( ( ( x D y )  e.  RR  /\  0  e.  RR )  ->  ( ( x D y )  =  0  <-> 
( ( x D y )  <_  0  /\  0  <_  ( x D y ) ) ) )
6330, 51, 62sylancl 662 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  =  0  <->  ( ( x D y )  <_ 
0  /\  0  <_  ( x D y ) ) ) )
6459, 61, 63mpbir2and 913 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  =  0 )
65 meteq0 19912 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
( x D y )  =  0  <->  x  =  y ) )
6626, 27, 28, 65syl3anc 1218 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  =  0  <->  x  =  y
) )
6764, 66mpbid 210 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  x  =  y )
6867ex 434 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y ) )
6968ralrimivva 2806 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y ) )
70 fveq2 5689 . . . . . . . 8  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
71 id 22 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
7270, 71eqeq12d 2455 . . . . . . 7  |-  ( x  =  z  ->  (
( F `  x
)  =  x  <->  ( F `  z )  =  z ) )
7372anbi1d 704 . . . . . 6  |-  ( x  =  z  ->  (
( ( F `  x )  =  x  /\  ( F `  y )  =  y )  <->  ( ( F `
 z )  =  z  /\  ( F `
 y )  =  y ) ) )
74 equequ1 1736 . . . . . 6  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
7573, 74imbi12d 320 . . . . 5  |-  ( x  =  z  ->  (
( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y )  <->  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
7675ralbidv 2733 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  X  ( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y )  <->  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
7776cbvralv 2945 . . 3  |-  ( A. x  e.  X  A. y  e.  X  (
( ( F `  x )  =  x  /\  ( F `  y )  =  y )  ->  x  =  y )  <->  A. z  e.  X  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) )
7869, 77sylib 196 . 2  |-  ( ph  ->  A. z  e.  X  A. y  e.  X  ( ( ( F `
 z )  =  z  /\  ( F `
 y )  =  y )  ->  z  =  y ) )
79 fveq2 5689 . . . 4  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
80 id 22 . . . 4  |-  ( z  =  y  ->  z  =  y )
8179, 80eqeq12d 2455 . . 3  |-  ( z  =  y  ->  (
( F `  z
)  =  z  <->  ( F `  y )  =  y ) )
8281reu4 3151 . 2  |-  ( E! z  e.  X  ( F `  z )  =  z  <->  ( E. z  e.  X  ( F `  z )  =  z  /\  A. z  e.  X  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
8319, 78, 82sylanbrc 664 1  |-  ( ph  ->  E! z  e.  X  ( F `  z )  =  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2604   A.wral 2713   E.wrex 2714   E!wreu 2715   (/)c0 3635   {csn 3875   class class class wbr 4290    X. cxp 4836    o. ccom 4842   -->wf 5412   ` cfv 5416  (class class class)co 6089   1stc1st 6573   CCcc 9278   RRcr 9279   0cc0 9280   1c1 9281    x. cmul 9285    < clt 9416    <_ cle 9417    - cmin 9593   NNcn 10320   RR+crp 10989    seqcseq 11804   Metcme 17800   MetOpencmopn 17804   CMetcms 20763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-map 7214  df-pm 7215  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-oi 7722  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-q 10952  df-rp 10990  df-xneg 11087  df-xadd 11088  df-xmul 11089  df-ico 11304  df-icc 11305  df-fz 11436  df-fzo 11547  df-fl 11640  df-seq 11805  df-exp 11864  df-hash 12102  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-clim 12964  df-rlim 12965  df-sum 13162  df-rest 14359  df-topgen 14380  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-mopn 17811  df-fbas 17812  df-fg 17813  df-top 18501  df-bases 18503  df-topon 18504  df-ntr 18622  df-nei 18700  df-lm 18831  df-haus 18917  df-fil 19417  df-fm 19509  df-flim 19510  df-flf 19511  df-cfil 20764  df-cau 20765  df-cmet 20766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator