Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Unicode version

Theorem bfp 30482
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if  F has two fixed points, then the distance between them is less than  K times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
Assertion
Ref Expression
bfp  |-  ( ph  ->  E! z  e.  X  ( F `  z )  =  z )
Distinct variable groups:    x, y,
z, D    ph, x, y   
x, F, y, z   
x, K, y    x, X, y, z
Allowed substitution hints:    ph( z)    K( z)

Proof of Theorem bfp
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4  |-  ( ph  ->  X  =/=  (/) )
2 n0 3803 . . . 4  |-  ( X  =/=  (/)  <->  E. w  w  e.  X )
31, 2sylib 196 . . 3  |-  ( ph  ->  E. w  w  e.  X )
4 bfp.2 . . . . 5  |-  ( ph  ->  D  e.  ( CMet `  X ) )
54adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  D  e.  ( CMet `  X
) )
61adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  X  =/=  (/) )
7 bfp.4 . . . . 5  |-  ( ph  ->  K  e.  RR+ )
87adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  K  e.  RR+ )
9 bfp.5 . . . . 5  |-  ( ph  ->  K  <  1 )
109adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  K  <  1 )
11 bfp.6 . . . . 5  |-  ( ph  ->  F : X --> X )
1211adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  F : X --> X )
13 bfp.7 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
1413adantlr 714 . . . 4  |-  ( ( ( ph  /\  w  e.  X )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
15 eqid 2457 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
16 simpr 461 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  w  e.  X )
17 eqid 2457 . . . 4  |-  seq 1
( ( F  o.  1st ) ,  ( NN 
X.  { w }
) )  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  {
w } ) )
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 30481 . . 3  |-  ( (
ph  /\  w  e.  X )  ->  E. z  e.  X  ( F `  z )  =  z )
193, 18exlimddv 1727 . 2  |-  ( ph  ->  E. z  e.  X  ( F `  z )  =  z )
20 oveq12 6305 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  x  /\  ( F `  y )  =  y )  -> 
( ( F `  x ) D ( F `  y ) )  =  ( x D y ) )
2120adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( F `
 x ) D ( F `  y
) )  =  ( x D y ) )
2213adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( F `
 x ) D ( F `  y
) )  <_  ( K  x.  ( x D y ) ) )
2321, 22eqbrtrrd 4478 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  <_  ( K  x.  ( x D y ) ) )
24 cmetmet 21850 . . . . . . . . . . . . . 14  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
254, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( Met `  X ) )
2625ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  D  e.  ( Met `  X ) )
27 simplrl 761 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  x  e.  X
)
28 simplrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  y  e.  X
)
29 metcl 20960 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
3026, 27, 28, 29syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  e.  RR )
317rpred 11281 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  RR )
3231ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  K  e.  RR )
3332, 30remulcld 9641 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( K  x.  ( x D y ) )  e.  RR )
3430, 33suble0d 10164 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( ( x D y )  -  ( K  x.  ( x D y ) ) )  <_ 
0  <->  ( x D y )  <_  ( K  x.  ( x D y ) ) ) )
3523, 34mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  -  ( K  x.  (
x D y ) ) )  <_  0
)
36 1cnd 9629 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  1  e.  CC )
3732recnd 9639 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  K  e.  CC )
3830recnd 9639 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  e.  CC )
3936, 37, 38subdird 10034 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  =  ( ( 1  x.  (
x D y ) )  -  ( K  x.  ( x D y ) ) ) )
4038mulid2d 9631 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  x.  ( x D y ) )  =  ( x D y ) )
4140oveq1d 6311 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  x.  ( x D y ) )  -  ( K  x.  (
x D y ) ) )  =  ( ( x D y )  -  ( K  x.  ( x D y ) ) ) )
4239, 41eqtrd 2498 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  =  ( ( x D y )  -  ( K  x.  ( x D y ) ) ) )
43 1re 9612 . . . . . . . . . . . . 13  |-  1  e.  RR
44 resubcl 9902 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  K  e.  RR )  ->  ( 1  -  K
)  e.  RR )
4543, 31, 44sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  K
)  e.  RR )
4645ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  -  K )  e.  RR )
4746recnd 9639 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( 1  -  K )  e.  CC )
4847mul01d 9796 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  0 )  =  0 )
4935, 42, 483brtr4d 4486 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) )
50 0red 9614 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  e.  RR )
51 posdif 10066 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( K  <  1  <->  0  <  ( 1  -  K ) ) )
5231, 43, 51sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( K  <  1  <->  0  <  ( 1  -  K ) ) )
539, 52mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  -  K ) )
5453ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  <  (
1  -  K ) )
55 lemul2 10416 . . . . . . . . 9  |-  ( ( ( x D y )  e.  RR  /\  0  e.  RR  /\  (
( 1  -  K
)  e.  RR  /\  0  <  ( 1  -  K ) ) )  ->  ( ( x D y )  <_ 
0  <->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) ) )
5630, 50, 46, 54, 55syl112anc 1232 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  <_ 
0  <->  ( ( 1  -  K )  x.  ( x D y ) )  <_  (
( 1  -  K
)  x.  0 ) ) )
5749, 56mpbird 232 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  <_  0
)
58 metge0 20973 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  0  <_  ( x D y ) )
5926, 27, 28, 58syl3anc 1228 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  0  <_  (
x D y ) )
60 0re 9613 . . . . . . . 8  |-  0  e.  RR
61 letri3 9687 . . . . . . . 8  |-  ( ( ( x D y )  e.  RR  /\  0  e.  RR )  ->  ( ( x D y )  =  0  <-> 
( ( x D y )  <_  0  /\  0  <_  ( x D y ) ) ) )
6230, 60, 61sylancl 662 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  =  0  <->  ( ( x D y )  <_ 
0  /\  0  <_  ( x D y ) ) ) )
6357, 59, 62mpbir2and 922 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( x D y )  =  0 )
64 meteq0 20967 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
( x D y )  =  0  <->  x  =  y ) )
6526, 27, 28, 64syl3anc 1228 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  ( ( x D y )  =  0  <->  x  =  y
) )
6663, 65mpbid 210 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  y  e.  X )
)  /\  ( ( F `  x )  =  x  /\  ( F `  y )  =  y ) )  ->  x  =  y )
6766ex 434 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y ) )
6867ralrimivva 2878 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y ) )
69 fveq2 5872 . . . . . . . 8  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
70 id 22 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
7169, 70eqeq12d 2479 . . . . . . 7  |-  ( x  =  z  ->  (
( F `  x
)  =  x  <->  ( F `  z )  =  z ) )
7271anbi1d 704 . . . . . 6  |-  ( x  =  z  ->  (
( ( F `  x )  =  x  /\  ( F `  y )  =  y )  <->  ( ( F `
 z )  =  z  /\  ( F `
 y )  =  y ) ) )
73 equequ1 1799 . . . . . 6  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
7472, 73imbi12d 320 . . . . 5  |-  ( x  =  z  ->  (
( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y )  <->  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
7574ralbidv 2896 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  X  ( ( ( F `
 x )  =  x  /\  ( F `
 y )  =  y )  ->  x  =  y )  <->  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
7675cbvralv 3084 . . 3  |-  ( A. x  e.  X  A. y  e.  X  (
( ( F `  x )  =  x  /\  ( F `  y )  =  y )  ->  x  =  y )  <->  A. z  e.  X  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) )
7768, 76sylib 196 . 2  |-  ( ph  ->  A. z  e.  X  A. y  e.  X  ( ( ( F `
 z )  =  z  /\  ( F `
 y )  =  y )  ->  z  =  y ) )
78 fveq2 5872 . . . 4  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
79 id 22 . . . 4  |-  ( z  =  y  ->  z  =  y )
8078, 79eqeq12d 2479 . . 3  |-  ( z  =  y  ->  (
( F `  z
)  =  z  <->  ( F `  y )  =  y ) )
8180reu4 3293 . 2  |-  ( E! z  e.  X  ( F `  z )  =  z  <->  ( E. z  e.  X  ( F `  z )  =  z  /\  A. z  e.  X  A. y  e.  X  ( (
( F `  z
)  =  z  /\  ( F `  y )  =  y )  -> 
z  =  y ) ) )
8219, 77, 81sylanbrc 664 1  |-  ( ph  ->  E! z  e.  X  ( F `  z )  =  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   E!wreu 2809   (/)c0 3793   {csn 4032   class class class wbr 4456    X. cxp 5006    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   1stc1st 6797   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824   NNcn 10556   RR+crp 11245    seqcseq 12109   Metcme 18530   MetOpencmopn 18534   CMetcms 21818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-rlim 13323  df-sum 13520  df-rest 14839  df-topgen 14860  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-top 19525  df-bases 19527  df-topon 19528  df-ntr 19647  df-nei 19725  df-lm 19856  df-haus 19942  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-cfil 21819  df-cau 21820  df-cmet 21821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator