MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Unicode version

Theorem bezoutlem1 12591
Description: Lemma for bezout 12595. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1  |-  M  =  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) }
bezout.3  |-  ( ph  ->  A  e.  ZZ )
bezout.4  |-  ( ph  ->  B  e.  ZZ )
Assertion
Ref Expression
bezoutlem1  |-  ( ph  ->  ( A  =/=  0  ->  ( abs `  A
)  e.  M ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    ph, x, y, z
Allowed substitution hints:    M( x, y, z)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 fveq2 5377 . . . . . . 7  |-  ( z  =  A  ->  ( abs `  z )  =  ( abs `  A
) )
3 oveq1 5717 . . . . . . 7  |-  ( z  =  A  ->  (
z  x.  x )  =  ( A  x.  x ) )
42, 3eqeq12d 2267 . . . . . 6  |-  ( z  =  A  ->  (
( abs `  z
)  =  ( z  x.  x )  <->  ( abs `  A )  =  ( A  x.  x ) ) )
54rexbidv 2528 . . . . 5  |-  ( z  =  A  ->  ( E. x  e.  ZZ  ( abs `  z )  =  ( z  x.  x )  <->  E. x  e.  ZZ  ( abs `  A
)  =  ( A  x.  x ) ) )
6 zre 9907 . . . . . 6  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 1z 9932 . . . . . . . . 9  |-  1  e.  ZZ
8 ax-1rid 8687 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  x.  1 )  =  z )
98eqcomd 2258 . . . . . . . . 9  |-  ( z  e.  RR  ->  z  =  ( z  x.  1 ) )
10 oveq2 5718 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
z  x.  x )  =  ( z  x.  1 ) )
1110eqeq2d 2264 . . . . . . . . . 10  |-  ( x  =  1  ->  (
z  =  ( z  x.  x )  <->  z  =  ( z  x.  1 ) ) )
1211rcla4ev 2821 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  z  =  ( z  x.  1 ) )  ->  E. x  e.  ZZ  z  =  ( z  x.  x ) )
137, 9, 12sylancr 647 . . . . . . . 8  |-  ( z  e.  RR  ->  E. x  e.  ZZ  z  =  ( z  x.  x ) )
14 eqeq1 2259 . . . . . . . . 9  |-  ( ( abs `  z )  =  z  ->  (
( abs `  z
)  =  ( z  x.  x )  <->  z  =  ( z  x.  x
) ) )
1514rexbidv 2528 . . . . . . . 8  |-  ( ( abs `  z )  =  z  ->  ( E. x  e.  ZZ  ( abs `  z )  =  ( z  x.  x )  <->  E. x  e.  ZZ  z  =  ( z  x.  x ) ) )
1613, 15syl5ibrcom 215 . . . . . . 7  |-  ( z  e.  RR  ->  (
( abs `  z
)  =  z  ->  E. x  e.  ZZ  ( abs `  z )  =  ( z  x.  x ) ) )
17 znegcl 9934 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
187, 17ax-mp 10 . . . . . . . . 9  |-  -u 1  e.  ZZ
19 recn 8707 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  e.  CC )
2019mulm1d 9111 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( -u 1  x.  z )  =  -u z )
21 neg1cn 9693 . . . . . . . . . . 11  |-  -u 1  e.  CC
22 mulcom 8703 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  z  e.  CC )  ->  ( -u 1  x.  z )  =  ( z  x.  -u 1
) )
2321, 19, 22sylancr 647 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( -u 1  x.  z )  =  ( z  x.  -u 1 ) )
2420, 23eqtr3d 2287 . . . . . . . . 9  |-  ( z  e.  RR  ->  -u z  =  ( z  x.  -u 1 ) )
25 oveq2 5718 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  (
z  x.  x )  =  ( z  x.  -u 1 ) )
2625eqeq2d 2264 . . . . . . . . . 10  |-  ( x  =  -u 1  ->  ( -u z  =  ( z  x.  x )  <->  -u z  =  ( z  x.  -u 1
) ) )
2726rcla4ev 2821 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  -u z  =  (
z  x.  -u 1
) )  ->  E. x  e.  ZZ  -u z  =  ( z  x.  x ) )
2818, 24, 27sylancr 647 . . . . . . . 8  |-  ( z  e.  RR  ->  E. x  e.  ZZ  -u z  =  ( z  x.  x ) )
29 eqeq1 2259 . . . . . . . . 9  |-  ( ( abs `  z )  =  -u z  ->  (
( abs `  z
)  =  ( z  x.  x )  <->  -u z  =  ( z  x.  x
) ) )
3029rexbidv 2528 . . . . . . . 8  |-  ( ( abs `  z )  =  -u z  ->  ( E. x  e.  ZZ  ( abs `  z )  =  ( z  x.  x )  <->  E. x  e.  ZZ  -u z  =  ( z  x.  x ) ) )
3128, 30syl5ibrcom 215 . . . . . . 7  |-  ( z  e.  RR  ->  (
( abs `  z
)  =  -u z  ->  E. x  e.  ZZ  ( abs `  z )  =  ( z  x.  x ) ) )
32 absor 11662 . . . . . . 7  |-  ( z  e.  RR  ->  (
( abs `  z
)  =  z  \/  ( abs `  z
)  =  -u z
) )
3316, 31, 32mpjaod 372 . . . . . 6  |-  ( z  e.  RR  ->  E. x  e.  ZZ  ( abs `  z
)  =  ( z  x.  x ) )
346, 33syl 17 . . . . 5  |-  ( z  e.  ZZ  ->  E. x  e.  ZZ  ( abs `  z
)  =  ( z  x.  x ) )
355, 34vtoclga 2787 . . . 4  |-  ( A  e.  ZZ  ->  E. x  e.  ZZ  ( abs `  A
)  =  ( A  x.  x ) )
361, 35syl 17 . . 3  |-  ( ph  ->  E. x  e.  ZZ  ( abs `  A )  =  ( A  x.  x ) )
37 bezout.4 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
3837zcnd 9997 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
3938adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ZZ )  ->  B  e.  CC )
4039mul01d 8891 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( B  x.  0 )  =  0 )
4140oveq2d 5726 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( A  x.  x )  +  ( B  x.  0 ) )  =  ( ( A  x.  x )  +  0 ) )
421zcnd 9997 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
43 zcn 9908 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
44 mulcl 8701 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
4542, 43, 44syl2an 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( A  x.  x )  e.  CC )
4645addid1d 8892 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( A  x.  x )  +  0 )  =  ( A  x.  x
) )
4741, 46eqtrd 2285 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( A  x.  x )  +  ( B  x.  0 ) )  =  ( A  x.  x
) )
4847eqeq2d 2264 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  0 ) )  <->  ( abs `  A )  =  ( A  x.  x ) ) )
49 0z 9914 . . . . . 6  |-  0  e.  ZZ
50 oveq2 5718 . . . . . . . . 9  |-  ( y  =  0  ->  ( B  x.  y )  =  ( B  x.  0 ) )
5150oveq2d 5726 . . . . . . . 8  |-  ( y  =  0  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  0 ) ) )
5251eqeq2d 2264 . . . . . . 7  |-  ( y  =  0  ->  (
( abs `  A
)  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  ( abs `  A )  =  ( ( A  x.  x
)  +  ( B  x.  0 ) ) ) )
5352rcla4ev 2821 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  0 ) ) )  ->  E. y  e.  ZZ  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
5449, 53mpan 654 . . . . 5  |-  ( ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  0 ) )  ->  E. y  e.  ZZ  ( abs `  A
)  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
5548, 54syl6bir 222 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( abs `  A )  =  ( A  x.  x )  ->  E. y  e.  ZZ  ( abs `  A
)  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
5655reximdva 2617 . . 3  |-  ( ph  ->  ( E. x  e.  ZZ  ( abs `  A
)  =  ( A  x.  x )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
5736, 56mpd 16 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
58 nnabscl 11686 . . . 4  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
5958ex 425 . . 3  |-  ( A  e.  ZZ  ->  ( A  =/=  0  ->  ( abs `  A )  e.  NN ) )
601, 59syl 17 . 2  |-  ( ph  ->  ( A  =/=  0  ->  ( abs `  A
)  e.  NN ) )
61 eqeq1 2259 . . . . 5  |-  ( z  =  ( abs `  A
)  ->  ( z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  ( abs `  A )  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
62612rexbidv 2548 . . . 4  |-  ( z  =  ( abs `  A
)  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
63 bezout.1 . . . 4  |-  M  =  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) }
6462, 63elrab2 2862 . . 3  |-  ( ( abs `  A )  e.  M  <->  ( ( abs `  A )  e.  NN  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( abs `  A
)  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
6564simplbi2com 1370 . 2  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  ( abs `  A )  =  ( ( A  x.  x )  +  ( B  x.  y ) )  ->  ( ( abs `  A )  e.  NN  ->  ( abs `  A )  e.  M
) )
6657, 60, 65sylsyld 54 1  |-  ( ph  ->  ( A  =/=  0  ->  ( abs `  A
)  e.  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   {crab 2512   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622   -ucneg 8918   NNcn 9626   ZZcz 9903   abscabs 11596
This theorem is referenced by:  bezoutlem2  12592  bezoutlem4  12594
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598
  Copyright terms: Public domain W3C validator