MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Unicode version

Theorem bernneq3 12276
Description: A corollary of bernneq 12274. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 10800 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
21adantl 464 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  RR )
3 peano2re 9742 . . 3  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
42, 3syl 16 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  RR )
5 eluzelre 11092 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
6 reexpcl 12165 . . 3  |-  ( ( P  e.  RR  /\  N  e.  NN0 )  -> 
( P ^ N
)  e.  RR )
75, 6sylan 469 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  RR )
82ltp1d 10471 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( N  +  1 ) )
9 uz2m1nn 11157 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
109adantr 463 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  NN )
1110nnred 10546 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  RR )
1211, 2remulcld 9613 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( P  -  1 )  x.  N )  e.  RR )
13 peano2re 9742 . . . 4  |-  ( ( ( P  -  1 )  x.  N )  e.  RR  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
1412, 13syl 16 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
15 1red 9600 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  e.  RR )
16 nn0ge0 10817 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_  N )
1716adantl 464 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  N )
1810nnge1d 10574 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  <_  ( P  -  1 ) )
192, 11, 17, 18lemulge12d 10479 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( ( P  - 
1 )  x.  N
) )
202, 12, 15, 19leadd1dd 10162 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( ( ( P  -  1 )  x.  N )  +  1 ) )
215adantr 463 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  P  e.  RR )
22 simpr 459 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
23 eluzge2nn0 11121 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN0 )
24 nn0ge0 10817 . . . . . 6  |-  ( P  e.  NN0  ->  0  <_  P )
2523, 24syl 16 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <_  P )
2625adantr 463 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  P )
27 bernneq2 12275 . . . 4  |-  ( ( P  e.  RR  /\  N  e.  NN0  /\  0  <_  P )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
2821, 22, 26, 27syl3anc 1226 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
294, 14, 7, 20, 28letrd 9728 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( P ^ N ) )
302, 4, 7, 8, 29ltletrd 9731 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796   NNcn 10531   2c2 10581   NN0cn0 10791   ZZ>=cuz 11082   ^cexp 12148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-seq 12090  df-exp 12149
This theorem is referenced by:  climcnds  13745  bitsfzo  14169  bitsinv1  14176  pcfaclem  14501  pcfac  14502  chpchtsum  23692  bposlem1  23757
  Copyright terms: Public domain W3C validator