MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Unicode version

Theorem bernneq3 11988
Description: A corollary of bernneq 11986. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 10584 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
21adantl 463 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  RR )
3 peano2re 9538 . . 3  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
42, 3syl 16 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  RR )
5 eluzelre 10867 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
6 reexpcl 11878 . . 3  |-  ( ( P  e.  RR  /\  N  e.  NN0 )  -> 
( P ^ N
)  e.  RR )
75, 6sylan 468 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  RR )
82ltp1d 10259 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( N  +  1 ) )
9 uz2m1nn 10925 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
109adantr 462 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  NN )
1110nnred 10333 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( P  -  1 )  e.  RR )
1211, 2remulcld 9410 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( P  -  1 )  x.  N )  e.  RR )
13 peano2re 9538 . . . 4  |-  ( ( ( P  -  1 )  x.  N )  e.  RR  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
1412, 13syl 16 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  e.  RR )
15 1red 9397 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  e.  RR )
16 nn0ge0 10601 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_  N )
1716adantl 463 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  N )
1810nnge1d 10360 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  1  <_  ( P  -  1 ) )
192, 11, 17, 18lemulge12d 10267 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( ( P  - 
1 )  x.  N
) )
202, 12, 15, 19leadd1dd 9949 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( ( ( P  -  1 )  x.  N )  +  1 ) )
215adantr 462 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  P  e.  RR )
22 simpr 458 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
23 2nn0 10592 . . . . . . 7  |-  2  e.  NN0
24 eluznn0 10920 . . . . . . 7  |-  ( ( 2  e.  NN0  /\  P  e.  ( ZZ>= ` 
2 ) )  ->  P  e.  NN0 )
2523, 24mpan 665 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN0 )
26 nn0ge0 10601 . . . . . 6  |-  ( P  e.  NN0  ->  0  <_  P )
2725, 26syl 16 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <_  P )
2827adantr 462 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  0  <_  P )
29 bernneq2 11987 . . . 4  |-  ( ( P  e.  RR  /\  N  e.  NN0  /\  0  <_  P )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
3021, 22, 28, 29syl3anc 1213 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( P  - 
1 )  x.  N
)  +  1 )  <_  ( P ^ N ) )
314, 14, 7, 20, 30letrd 9524 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( P ^ N ) )
322, 4, 7, 8, 31ltletrd 9527 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( P ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1761   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575   ZZ>=cuz 10857   ^cexp 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-seq 11803  df-exp 11862
This theorem is referenced by:  climcnds  13310  bitsfzo  13627  bitsinv1  13634  pcfaclem  13956  pcfac  13957  chpchtsum  22517  bposlem1  22582
  Copyright terms: Public domain W3C validator