MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Unicode version

Theorem bddmulibl 22118
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl  |-  ( ( F  e. MblFn  /\  G  e.  L^1  /\  E. x  e.  RR  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)  ->  ( F  oF  x.  G
)  e.  L^1 )
Distinct variable groups:    x, y, F    x, G, y

Proof of Theorem bddmulibl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mbff 21907 . . . . . . 7  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
21ad2antrr 725 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F : dom  F --> CC )
3 ffn 5721 . . . . . 6  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
42, 3syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F  Fn  dom  F )
5 iblmbf 22047 . . . . . . . 8  |-  ( G  e.  L^1  ->  G  e. MblFn )
65ad2antlr 726 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  e. MblFn )
7 mbff 21907 . . . . . . 7  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G : dom  G --> CC )
9 ffn 5721 . . . . . 6  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  Fn  dom  G )
11 mbfdm 21908 . . . . . 6  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
1211ad2antrr 725 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  dom  F  e. 
dom  vol )
13 mbfdm 21908 . . . . . 6  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  dom  G  e. 
dom  vol )
15 eqid 2443 . . . . 5  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2444 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  F )  ->  ( F `  z )  =  ( F `  z ) )
17 eqidd 2444 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  G )  ->  ( G `  z )  =  ( G `  z ) )
184, 10, 12, 14, 15, 16, 17offval 6532 . . . 4  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  oF  x.  G
)  =  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) ) )
19 ovex 6309 . . . . . 6  |-  ( ( F `  z )  x.  ( G `  z ) )  e. 
_V
2019a1i 11 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  z
)  x.  ( G `
 z ) )  e.  _V )
21 simpll 753 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F  e. MblFn )
2221, 6mbfmul 22006 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  oF  x.  G
)  e. MblFn )
2318, 22eqeltrrd 2532 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  e. MblFn )
2423, 20mbfmptcl 21917 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  z
)  x.  ( G `
 z ) )  e.  CC )
25 eqidd 2444 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  =  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) )
26 absf 13149 . . . . . . . . . 10  |-  abs : CC
--> RR
2726a1i 11 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs : CC --> RR )
2827feqmptd 5911 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
29 fveq2 5856 . . . . . . . 8  |-  ( y  =  ( ( F `
 z )  x.  ( G `  z
) )  ->  ( abs `  y )  =  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )
3024, 25, 28, 29fmptco 6049 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) )  =  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ) )
31 eqid 2443 . . . . . . . . 9  |-  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) )  =  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) )
3224, 31fmptd 6040 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) : ( dom  F  i^i  dom  G ) --> CC )
33 ax-resscn 9552 . . . . . . . . . . 11  |-  RR  C_  CC
34 ssid 3508 . . . . . . . . . . 11  |-  CC  C_  CC
35 cncfss 21276 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
3633, 34, 35mp2an 672 . . . . . . . . . 10  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
37 abscncf 21278 . . . . . . . . . 10  |-  abs  e.  ( CC -cn-> RR )
3836, 37sselii 3486 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> CC )
3938a1i 11 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs  e.  ( CC -cn-> CC ) )
40 cncombf 21938 . . . . . . . 8  |-  ( ( ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) )  e. MblFn  /\  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) : ( dom  F  i^i  dom 
G ) --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) )  e. MblFn )
4123, 32, 39, 40syl3anc 1229 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) )  e. MblFn )
4230, 41eqeltrrd 2532 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e. MblFn
)
4324abscld 13246 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e.  RR )
4443rexrd 9646 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e. 
RR* )
4524absge0d 13254 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )
46 elxrge0 11638 . . . . . . . . . . 11  |-  ( ( abs `  ( ( F `  z )  x.  ( G `  z ) ) )  e.  ( 0 [,] +oo )  <->  ( ( abs `  ( ( F `  z )  x.  ( G `  z )
) )  e.  RR*  /\  0  <_  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ) )
4744, 45, 46sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e.  ( 0 [,] +oo ) )
48 0e0iccpnf 11640 . . . . . . . . . . 11  |-  0  e.  ( 0 [,] +oo )
4948a1i 11 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
0  e.  ( 0 [,] +oo ) )
5047, 49ifclda 3958 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
5150adantr 465 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
52 eqid 2443 . . . . . . . 8  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )
5351, 52fmptd 6040 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
54 reex 9586 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
5554a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  RR  e.  _V )
56 simprl 756 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  x  e.  RR )
5756ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  /\  z  e.  RR )  ->  x  e.  RR )
58 elin 3672 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( dom  F  i^i  dom  G )  <->  ( z  e.  dom  F  /\  z  e.  dom  G ) )
5958simprbi 464 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  G
)
60 ffvelrn 6014 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : dom  G --> CC  /\  z  e.  dom  G )  ->  ( G `  z )  e.  CC )
618, 59, 60syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  z )  e.  CC )
6261abscld 13246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( G `  z ) )  e.  RR )
6361absge0d 13254 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  ( G `  z )
) )
64 elrege0 11636 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  ( G `
 z ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( G `  z
) )  e.  RR  /\  0  <_  ( abs `  ( G `  z
) ) ) )
6562, 63, 64sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( G `  z ) )  e.  ( 0 [,) +oo ) )
66 0e0icopnf 11639 . . . . . . . . . . . . . . . . 17  |-  0  e.  ( 0 [,) +oo )
6766a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
0  e.  ( 0 [,) +oo ) )
6865, 67ifclda 3958 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 )  e.  ( 0 [,) +oo ) )
6968ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  /\  z  e.  RR )  ->  if ( z  e.  ( dom  F  i^i  dom 
G ) ,  ( abs `  ( G `
 z ) ) ,  0 )  e.  ( 0 [,) +oo ) )
70 fconstmpt 5033 . . . . . . . . . . . . . . 15  |-  ( RR 
X.  { x }
)  =  ( z  e.  RR  |->  x )
7170a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( RR  X.  {
x } )  =  ( z  e.  RR  |->  x ) )
72 eqidd 2444 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )
7355, 57, 69, 71, 72offval2 6541 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( RR  X.  { x } )  oF  x.  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) ) )
74 ovif2 6365 . . . . . . . . . . . . . . 15  |-  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )  =  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  ( x  x.  0 ) )
7556recnd 9625 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  x  e.  CC )
7675adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  CC )
7776mul01d 9782 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  0 )  =  0 )
7877ifeq2d 3945 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  ( x  x.  0 ) )  =  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
7974, 78syl5eq 2496 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) )  =  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
8079mpteq2dv 4524 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
8173, 80eqtrd 2484 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( RR  X.  { x } )  oF  x.  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
8281fveq2d 5860 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( ( RR  X.  { x } )  oF  x.  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  =  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
8368adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 )  e.  ( 0 [,) +oo ) )
84 eqid 2443 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )
8583, 84fmptd 6040 . . . . . . . . . . . . 13  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
8685adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
87 inss2 3704 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
8887a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( dom  F  i^i  dom  G )  C_ 
dom  G )
8923, 20mbfdm2 21918 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( dom  F  i^i  dom  G )  e.  dom  vol )
908ffvelrnda 6016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  G )  ->  ( G `  z )  e.  CC )
918feqmptd 5911 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  =  ( z  e.  dom  G 
|->  ( G `  z
) ) )
92 simplr 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  e.  L^1 )
9391, 92eqeltrrd 2532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  dom  G  |->  ( G `
 z ) )  e.  L^1 )
9488, 89, 90, 93iblss 22084 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 z ) )  e.  L^1 )
9561, 94iblabs 22108 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( G `  z
) ) )  e.  L^1 )
9662, 63iblpos 22072 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  ( G `  z )
) )  e.  L^1 
<->  ( ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( G `  z
) ) )  e. MblFn  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  e.  RR ) ) )
9795, 96mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  ( G `  z )
) )  e. MblFn  /\  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) )  e.  RR ) )
9897simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  e.  RR )
9998adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) )  e.  RR )
100 simplrl 761 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  RR )
101 neq0 3781 . . . . . . . . . . . . . . 15  |-  ( -.  ( dom  F  i^i  dom 
G )  =  (/)  <->  E. z  z  e.  ( dom  F  i^i  dom  G
) )
102 0re 9599 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
103102a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  e.  RR )
10458simplbi 460 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  F
)
105 ffvelrn 6014 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1062, 104, 105syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  z )  e.  CC )
107106abscld 13246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( F `  z ) )  e.  RR )
108 simplrl 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  x  e.  RR )
109106absge0d 13254 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  ( F `  z )
) )
110 simprr 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)
111 fveq2 5856 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
112111fveq2d 5860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  ( abs `  ( F `  y ) )  =  ( abs `  ( F `  z )
) )
113112breq1d 4447 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  (
( abs `  ( F `  y )
)  <_  x  <->  ( abs `  ( F `  z
) )  <_  x
) )
114113rspccva 3195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z )
)  <_  x )
115110, 104, 114syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( F `  z ) )  <_  x )
116103, 107, 108, 109, 115letrd 9742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  x )
117116ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  ->  0  <_  x ) )
118117exlimdv 1711 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( E. z  z  e.  ( dom  F  i^i  dom  G
)  ->  0  <_  x ) )
119101, 118syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( -.  ( dom  F  i^i  dom  G )  =  (/)  ->  0  <_  x ) )
120119imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
0  <_  x )
121 elrege0 11636 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
122100, 120, 121sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  ( 0 [,) +oo ) )
12386, 99, 122itg2mulc 22027 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( ( RR  X.  { x } )  oF  x.  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  =  ( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) ) )
12482, 123eqtr3d 2486 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  =  ( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) ) )
125100, 99remulcld 9627 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  e.  RR )
126124, 125eqeltrd 2531 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
127126ex 434 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( -.  ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  e.  RR ) )
128 noel 3774 . . . . . . . . . . . . . 14  |-  -.  z  e.  (/)
129 eleq2 2516 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  ( dom 
F  i^i  dom  G )  <-> 
z  e.  (/) ) )
130128, 129mtbiri 303 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  z  e.  ( dom  F  i^i  dom  G )
)
131 iffalse 3935 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 )  =  0 )
132130, 131syl 16 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  0 )
133132mpteq2dv 4524 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( z  e.  RR  |->  0 ) )
134 fconstmpt 5033 . . . . . . . . . . 11  |-  ( RR 
X.  { 0 } )  =  ( z  e.  RR  |->  0 )
135133, 134syl6eqr 2502 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( RR  X.  { 0 } ) )
136135fveq2d 5860 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  =  ( S.2 `  ( RR  X.  {
0 } ) ) )
137 itg20 22017 . . . . . . . . . 10  |-  ( S.2 `  ( RR  X.  {
0 } ) )  =  0
138137, 102eqeltri 2527 . . . . . . . . 9  |-  ( S.2 `  ( RR  X.  {
0 } ) )  e.  RR
139136, 138syl6eqel 2539 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  e.  RR )
140127, 139pm2.61d2 160 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
141108, 62remulcld 9627 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e.  RR )
142141rexrd 9646 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e. 
RR* )
143108, 62, 116, 63mulge0d 10135 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( x  x.  ( abs `  ( G `  z ) ) ) )
144 elxrge0 11638 . . . . . . . . . . . 12  |-  ( ( x  x.  ( abs `  ( G `  z
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( x  x.  ( abs `  ( G `  z )
) )  e.  RR*  /\  0  <_  ( x  x.  ( abs `  ( G `  z )
) ) ) )
145142, 143, 144sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e.  ( 0 [,] +oo ) )
146145, 49ifclda 3958 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
147146adantr 465 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  e.  ( 0 [,] +oo ) )
148 eqid 2443 . . . . . . . . 9  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
149147, 148fmptd 6040 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
150106, 61absmuld 13264 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  =  ( ( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) ) )
151 abscl 13090 . . . . . . . . . . . . . . . 16  |-  ( ( G `  z )  e.  CC  ->  ( abs `  ( G `  z ) )  e.  RR )
152 absge0 13099 . . . . . . . . . . . . . . . 16  |-  ( ( G `  z )  e.  CC  ->  0  <_  ( abs `  ( G `  z )
) )
153151, 152jca 532 . . . . . . . . . . . . . . 15  |-  ( ( G `  z )  e.  CC  ->  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )
15461, 153syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )
155 lemul1a 10402 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  z )
)  e.  RR  /\  x  e.  RR  /\  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )  /\  ( abs `  ( F `
 z ) )  <_  x )  -> 
( ( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
156107, 108, 154, 115, 155syl31anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
157150, 156eqbrtrd 4457 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
158 iftrue 3932 . . . . . . . . . . . . 13  |-  ( z  e.  ( dom  F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  =  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )
159158adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  =  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )
160 iftrue 3932 . . . . . . . . . . . . 13  |-  ( z  e.  ( dom  F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  ( x  x.  ( abs `  ( G `  z )
) ) )
161160adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  ( x  x.  ( abs `  ( G `  z )
) ) )
162157, 159, 1613brtr4d 4467 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
163 0le0 10631 . . . . . . . . . . . . . 14  |-  0  <_  0
164163a1i 11 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  0  <_  0
)
165 iffalse 3935 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  =  0 )
166164, 165, 1313brtr4d 4467 . . . . . . . . . . . 12  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
167166adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
168162, 167pm2.61dan 791 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
169168ralrimivw 2858 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  A. z  e.  RR  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
17054a1i 11 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  RR  e.  _V )
171 eqidd 2444 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) ) )
172 eqidd 2444 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )
173170, 51, 147, 171, 172ofrfval2 6542 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) )  oR  <_  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )  <->  A. z  e.  RR  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
174169, 173mpbird 232 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  oR  <_ 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
175 itg2le 22019 . . . . . . . 8  |-  ( ( ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) )  oR  <_  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
17653, 149, 174, 175syl3anc 1229 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
177 itg2lecl 22018 . . . . . . 7  |-  ( ( ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )  ->  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
17853, 140, 176, 177syl3anc 1229 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
17943, 45iblpos 22072 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )  e.  L^1 
<->  ( ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e. MblFn  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR ) ) )
18042, 178, 179mpbir2and 922 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e.  L^1 )
18120, 23, 180iblabsr 22109 . . . 4  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  e.  L^1 )
18218, 181eqeltrd 2531 . . 3  |-  ( ( ( F  e. MblFn  /\  G  e.  L^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  oF  x.  G
)  e.  L^1 )
183182rexlimdvaa 2936 . 2  |-  ( ( F  e. MblFn  /\  G  e.  L^1 )  -> 
( E. x  e.  RR  A. y  e. 
dom  F ( abs `  ( F `  y
) )  <_  x  ->  ( F  oF  x.  G )  e.  L^1 ) )
1841833impia 1194 1  |-  ( ( F  e. MblFn  /\  G  e.  L^1  /\  E. x  e.  RR  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)  ->  ( F  oF  x.  G
)  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804   A.wral 2793   E.wrex 2794   _Vcvv 3095    i^i cin 3460    C_ wss 3461   (/)c0 3770   ifcif 3926   {csn 4014   class class class wbr 4437    |-> cmpt 4495    X. cxp 4987   dom cdm 4989    o. ccom 4993    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    oFcof 6523    oRcofr 6524   CCcc 9493   RRcr 9494   0cc0 9495    x. cmul 9500   +oocpnf 9628   RR*cxr 9630    <_ cle 9632   [,)cico 11540   [,]cicc 11541   abscabs 13046   -cn->ccncf 21253   volcvol 21748  MblFncmbf 21896   S.2citg2 21898   L^1cibl 21899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cc 8818  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ioc 11543  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-mod 11976  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cn 19601  df-cnp 19602  df-cmp 19760  df-tx 19936  df-hmeo 20129  df-xms 20696  df-ms 20697  df-tms 20698  df-cncf 21255  df-ovol 21749  df-vol 21750  df-mbf 21901  df-itg1 21902  df-itg2 21903  df-ibl 21904  df-0p 21950
This theorem is referenced by:  bddibl  22119  itgsubstlem  22322  fourierdlem16  31794  fourierdlem21  31799  fourierdlem22  31800  fourierdlem83  31861
  Copyright terms: Public domain W3C validator