MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval4 Structured version   Unicode version

Theorem bcval4 12367
Description: Value of the binomial coefficient,  N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 11692 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
2 0re 9585 . . . . . . . . . 10  |-  0  e.  RR
3 elfzelz 11691 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
43zred 10965 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
5 lenlt 9652 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  -.  K  <  0 ) )
62, 4, 5sylancr 661 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  (
0  <_  K  <->  -.  K  <  0 ) )
71, 6mpbid 210 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  -.  K  <  0 )
87adantl 464 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  K  <  0 )
9 elfzle2 11693 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
109adantl 464 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  K  <_  N
)
11 nn0re 10800 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
12 lenlt 9652 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <_  N  <->  -.  N  <  K ) )
134, 11, 12syl2anr 476 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1410, 13mpbid 210 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  N  <  K )
15 ioran 488 . . . . . . 7  |-  ( -.  ( K  <  0  \/  N  <  K )  <-> 
( -.  K  <  0  /\  -.  N  <  K ) )
168, 14, 15sylanbrc 662 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  ( K  <  0  \/  N  < 
K ) )
1716ex 432 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  <  K ) ) )
1817adantr 463 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  < 
K ) ) )
1918con2d 115 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  <  0  \/  N  < 
K )  ->  -.  K  e.  ( 0 ... N ) ) )
20193impia 1191 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  -.  K  e.  (
0 ... N ) )
21 bcval3 12366 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
2220, 21syld3an3 1271 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439  (class class class)co 6270   RRcr 9480   0cc0 9481    < clt 9617    <_ cle 9618   NN0cn0 10791   ZZcz 10860   ...cfz 11675    _C cbc 12362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-i2m1 9549  ax-1ne0 9550  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-xr 9621  df-le 9623  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-bc 12363
This theorem is referenced by:  bc0k  12371  bcn1  12373  bcpasc  12381  hashf1  12490  ram0  14624  srgbinomlem3  17388  srgbinomlem4  17389  basellem2  23553  bcmono  23750  cusgrasizeindb1  24673  binomfallfaclem2  29403  altgsumbcALT  33196
  Copyright terms: Public domain W3C validator