MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval3 Unicode version

Theorem bcval3 11552
Description: Value of the binomial coefficient,  N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcval3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )

Proof of Theorem bcval3
StepHypRef Expression
1 bcval 11550 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
213adant3 977 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 ) )
3 iffalse 3706 . . 3  |-  ( -.  K  e.  ( 0 ... N )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) ,  0 )  =  0 )
433ad2ant3 980 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ,  0 )  =  0 )
52, 4eqtrd 2436 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   ifcif 3699   ` cfv 5413  (class class class)co 6040   0cc0 8946    x. cmul 8951    - cmin 9247    / cdiv 9633   NN0cn0 10177   ZZcz 10238   ...cfz 10999   !cfa 11521    _C cbc 11548
This theorem is referenced by:  bcval4  11553  bccmpl  11555  bcval5  11564  bcpasc  11567  bccl  11568  hashbc  11657  binomlem  12563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-mulcl 9008  ax-i2m1 9014
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-bc 11549
  Copyright terms: Public domain W3C validator