MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval Structured version   Unicode version

Theorem bcval 12339
Description: Value of the binomial coefficient,  N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 12340 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )

Proof of Theorem bcval
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6285 . . . 4  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
21eleq2d 2532 . . 3  |-  ( n  =  N  ->  (
k  e.  ( 0 ... n )  <->  k  e.  ( 0 ... N
) ) )
3 fveq2 5859 . . . 4  |-  ( n  =  N  ->  ( ! `  n )  =  ( ! `  N ) )
4 oveq1 6284 . . . . . 6  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
54fveq2d 5863 . . . . 5  |-  ( n  =  N  ->  ( ! `  ( n  -  k ) )  =  ( ! `  ( N  -  k
) ) )
65oveq1d 6292 . . . 4  |-  ( n  =  N  ->  (
( ! `  (
n  -  k ) )  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  k ) )  x.  ( ! `  k
) ) )
73, 6oveq12d 6295 . . 3  |-  ( n  =  N  ->  (
( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) )
82, 7ifbieq1d 3957 . 2  |-  ( n  =  N  ->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( k  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) ) ) ,  0 ) )
9 eleq1 2534 . . 3  |-  ( k  =  K  ->  (
k  e.  ( 0 ... N )  <->  K  e.  ( 0 ... N
) ) )
10 oveq2 6285 . . . . . 6  |-  ( k  =  K  ->  ( N  -  k )  =  ( N  -  K ) )
1110fveq2d 5863 . . . . 5  |-  ( k  =  K  ->  ( ! `  ( N  -  k ) )  =  ( ! `  ( N  -  K
) ) )
12 fveq2 5859 . . . . 5  |-  ( k  =  K  ->  ( ! `  k )  =  ( ! `  K ) )
1311, 12oveq12d 6295 . . . 4  |-  ( k  =  K  ->  (
( ! `  ( N  -  k )
)  x.  ( ! `
 k ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )
1413oveq2d 6293 . . 3  |-  ( k  =  K  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  k ) )  x.  ( ! `  k ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
159, 14ifbieq1d 3957 . 2  |-  ( k  =  K  ->  if ( k  e.  ( 0 ... N ) ,  ( ( ! `
 N )  / 
( ( ! `  ( N  -  k
) )  x.  ( ! `  k )
) ) ,  0 )  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
16 df-bc 12338 . 2  |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `
 n )  / 
( ( ! `  ( n  -  k
) )  x.  ( ! `  k )
) ) ,  0 ) )
17 ovex 6302 . . 3  |-  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  e. 
_V
18 c0ex 9581 . . 3  |-  0  e.  _V
1917, 18ifex 4003 . 2  |-  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 )  e.  _V
208, 15, 16, 19ovmpt2 6415 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  if ( K  e.  ( 0 ... N ) ,  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   ifcif 3934   ` cfv 5581  (class class class)co 6277   0cc0 9483    x. cmul 9488    - cmin 9796    / cdiv 10197   NN0cn0 10786   ZZcz 10855   ...cfz 11663   !cfa 12310    _C cbc 12337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-mulcl 9545  ax-i2m1 9551
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-iota 5544  df-fun 5583  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-bc 12338
This theorem is referenced by:  bcval2  12340  bcval3  12341
  Copyright terms: Public domain W3C validator