MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem4 Structured version   Visualization version   Unicode version

Theorem bcthlem4 22288
Description: Lemma for bcth 22290. Given any open ball  ( C ( ball `  D
) R ) as starting point (and in particular, a ball in  int ( U. ran  M )), the limit point  x of the centers of the induced sequence of balls  g is outside  U. ran  M. Note that a set  A has empty interior iff every nonempty open set  U contains points outside  A, i.e.  ( U  \  A )  =/=  (/). (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
bcthlem.6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
bcthlem.7  |-  ( ph  ->  R  e.  RR+ )
bcthlem.8  |-  ( ph  ->  C  e.  X )
bcthlem.9  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
bcthlem.10  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
bcthlem.11  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
Assertion
Ref Expression
bcthlem4  |-  ( ph  ->  ( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
Distinct variable groups:    k, r, x, z    C, r, x   
g, k, r, x, z, D    g, F, k, r, x, z    g, J, k, r, x, z   
g, M, k, r, x, z    ph, k,
r, x, z    x, R    g, X, k, r, x, z
Allowed substitution hints:    ph( g)    C( z, g, k)    R( z, g, k, r)

Proof of Theorem bcthlem4
Dummy variables  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . 4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 22249 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 21342 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 17 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 bcthlem.9 . . . . 5  |-  ( ph  ->  g : NN --> ( X  X.  RR+ ) )
7 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
8 bcthlem.5 . . . . . 6  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
9 bcthlem.6 . . . . . 6  |-  ( ph  ->  M : NN --> ( Clsd `  J ) )
10 bcthlem.7 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
11 bcthlem.8 . . . . . 6  |-  ( ph  ->  C  e.  X )
12 bcthlem.10 . . . . . 6  |-  ( ph  ->  ( g `  1
)  =  <. C ,  R >. )
13 bcthlem.11 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) ) )
147, 1, 8, 9, 10, 11, 6, 12, 13bcthlem2 22286 . . . . 5  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( g `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( g `  n ) ) )
15 elrp 11301 . . . . . . . . 9  |-  ( r  e.  RR+  <->  ( r  e.  RR  /\  0  < 
r ) )
16 nnrecl 10864 . . . . . . . . 9  |-  ( ( r  e.  RR  /\  0  <  r )  ->  E. m  e.  NN  ( 1  /  m
)  <  r )
1715, 16sylbi 199 . . . . . . . 8  |-  ( r  e.  RR+  ->  E. m  e.  NN  ( 1  /  m )  <  r
)
1817adantl 468 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. m  e.  NN  ( 1  /  m )  <  r
)
19 peano2nn 10618 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
2019adantl 468 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  NN )
21 oveq1 6295 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
2221fveq2d 5867 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
23 id 22 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  k  =  m )
24 fveq2 5863 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
2523, 24oveq12d 6306 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
k F ( g `
 k ) )  =  ( m F ( g `  m
) ) )
2622, 25eleq12d 2522 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  <->  ( g `  ( m  +  1 ) )  e.  ( m F ( g `
 m ) ) ) )
2726rspccva 3148 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  e.  ( k F ( g `  k ) )  /\  m  e.  NN )  ->  ( g `  (
m  +  1 ) )  e.  ( m F ( g `  m ) ) )
2813, 27sylan 474 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  e.  ( m F ( g `  m ) ) )
296ffvelrnda 6020 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 m )  e.  ( X  X.  RR+ ) )
307, 1, 8bcthlem1 22285 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN  /\  ( g `
 m )  e.  ( X  X.  RR+ ) ) )  -> 
( ( g `  ( m  +  1
) )  e.  ( m F ( g `
 m ) )  <-> 
( ( g `  ( m  +  1
) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  (
g `  ( m  +  1 ) ) )  <  ( 1  /  m )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) )
3130expr 619 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  m )  e.  ( X  X.  RR+ )  ->  ( (
g `  ( m  +  1 ) )  e.  ( m F ( g `  m
) )  <->  ( (
g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) ) )
3229, 31mpd 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  ( m  +  1 ) )  e.  ( m F ( g `  m
) )  <->  ( (
g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) ) )
3328, 32mpbid 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  /\  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) ) )
3433simp2d 1020 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m ) )
3534adantlr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  ( 2nd `  ( g `  ( m  +  1
) ) )  < 
( 1  /  m
) )
3633simp1d 1019 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  e.  ( X  X.  RR+ ) )
37 xp2nd 6821 . . . . . . . . . . . . . 14  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR+ )
3836, 37syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR+ )
3938rpred 11338 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR )
4039adantlr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  ( 2nd `  ( g `  ( m  +  1
) ) )  e.  RR )
41 nnrecre 10643 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
4241adantl 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
1  /  m )  e.  RR )
43 rpre 11305 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
4443ad2antlr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  r  e.  RR )
45 lttr 9707 . . . . . . . . . . 11  |-  ( ( ( 2nd `  (
g `  ( m  +  1 ) ) )  e.  RR  /\  ( 1  /  m
)  e.  RR  /\  r  e.  RR )  ->  ( ( ( 2nd `  ( g `  (
m  +  1 ) ) )  <  (
1  /  m )  /\  ( 1  /  m )  <  r
)  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  r
) )
4640, 42, 44, 45syl3anc 1267 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( ( 2nd `  (
g `  ( m  +  1 ) ) )  <  ( 1  /  m )  /\  ( 1  /  m
)  <  r )  ->  ( 2nd `  (
g `  ( m  +  1 ) ) )  <  r ) )
4735, 46mpand 680 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( 1  /  m
)  <  r  ->  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  <  r ) )
48 fveq2 5863 . . . . . . . . . . . 12  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
4948fveq2d 5867 . . . . . . . . . . 11  |-  ( n  =  ( m  + 
1 )  ->  ( 2nd `  ( g `  n ) )  =  ( 2nd `  (
g `  ( m  +  1 ) ) ) )
5049breq1d 4411 . . . . . . . . . 10  |-  ( n  =  ( m  + 
1 )  ->  (
( 2nd `  (
g `  n )
)  <  r  <->  ( 2nd `  ( g `  (
m  +  1 ) ) )  <  r
) )
5150rspcev 3149 . . . . . . . . 9  |-  ( ( ( m  +  1 )  e.  NN  /\  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  <  r )  ->  E. n  e.  NN  ( 2nd `  ( g `
 n ) )  <  r )
5220, 47, 51syl6an 548 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  m  e.  NN )  ->  (
( 1  /  m
)  <  r  ->  E. n  e.  NN  ( 2nd `  ( g `  n ) )  < 
r ) )
5352rexlimdva 2878 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. m  e.  NN  (
1  /  m )  <  r  ->  E. n  e.  NN  ( 2nd `  (
g `  n )
)  <  r )
)
5418, 53mpd 15 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. n  e.  NN  ( 2nd `  (
g `  n )
)  <  r )
5554ralrimiva 2801 . . . . 5  |-  ( ph  ->  A. r  e.  RR+  E. n  e.  NN  ( 2nd `  ( g `  n ) )  < 
r )
565, 6, 14, 55caubl 22270 . . . 4  |-  ( ph  ->  ( 1st  o.  g
)  e.  ( Cau `  D ) )
577cmetcau 22252 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( 1st  o.  g )  e.  ( Cau `  D
) )  ->  ( 1st  o.  g )  e. 
dom  ( ~~> t `  J ) )
581, 56, 57syl2anc 666 . . 3  |-  ( ph  ->  ( 1st  o.  g
)  e.  dom  ( ~~> t `  J )
)
59 fo1st 6810 . . . . . 6  |-  1st : _V -onto-> _V
60 fofun 5792 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
6159, 60ax-mp 5 . . . . 5  |-  Fun  1st
62 vex 3047 . . . . 5  |-  g  e. 
_V
63 cofunexg 6754 . . . . 5  |-  ( ( Fun  1st  /\  g  e.  _V )  ->  ( 1st  o.  g )  e. 
_V )
6461, 62, 63mp2an 677 . . . 4  |-  ( 1st 
o.  g )  e. 
_V
6564eldm 5031 . . 3  |-  ( ( 1st  o.  g )  e.  dom  ( ~~> t `  J )  <->  E. x
( 1st  o.  g
) ( ~~> t `  J ) x )
6658, 65sylib 200 . 2  |-  ( ph  ->  E. x ( 1st 
o.  g ) ( ~~> t `  J ) x )
67 1nn 10617 . . . . . 6  |-  1  e.  NN
687, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 22287 . . . . . 6  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  1  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  1
) ) )
6967, 68mp3an3 1352 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( ( ball `  D
) `  ( g `  1 ) ) )
7012fveq2d 5867 . . . . . . 7  |-  ( ph  ->  ( ( ball `  D
) `  ( g `  1 ) )  =  ( ( ball `  D ) `  <. C ,  R >. )
)
71 df-ov 6291 . . . . . . 7  |-  ( C ( ball `  D
) R )  =  ( ( ball `  D
) `  <. C ,  R >. )
7270, 71syl6eqr 2502 . . . . . 6  |-  ( ph  ->  ( ( ball `  D
) `  ( g `  1 ) )  =  ( C (
ball `  D ) R ) )
7372adantr 467 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  ( ( ball `  D ) `  (
g `  1 )
)  =  ( C ( ball `  D
) R ) )
7469, 73eleqtrd 2530 . . . 4  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( C ( ball `  D
) R ) )
757mopntop 21448 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
765, 75syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
7776adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  J  e. 
Top )
785adantr 467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  D  e.  ( *Met `  X ) )
79 xp1st 6820 . . . . . . . . . . . . . . 15  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( g `  (
m  +  1 ) ) )  e.  X
)
8036, 79syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( g `  (
m  +  1 ) ) )  e.  X
)
8138rpxrd 11339 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( g `  (
m  +  1 ) ) )  e.  RR* )
82 blssm 21426 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  (
g `  ( m  +  1 ) ) )  e.  X  /\  ( 2nd `  ( g `
 ( m  + 
1 ) ) )  e.  RR* )  ->  (
( 1st `  (
g `  ( m  +  1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  C_  X
)
8378, 80, 81, 82syl3anc 1267 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  C_  X
)
84 1st2nd2 6827 . . . . . . . . . . . . . . . 16  |-  ( ( g `  ( m  +  1 ) )  e.  ( X  X.  RR+ )  ->  ( g `  ( m  +  1 ) )  =  <. ( 1st `  ( g `
 ( m  + 
1 ) ) ) ,  ( 2nd `  (
g `  ( m  +  1 ) ) ) >. )
8536, 84syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( g `
 ( m  + 
1 ) )  = 
<. ( 1st `  (
g `  ( m  +  1 ) ) ) ,  ( 2nd `  ( g `  (
m  +  1 ) ) ) >. )
8685fveq2d 5867 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
m  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( m  + 
1 ) ) )
>. ) )
87 df-ov 6291 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( g `  (
m  +  1 ) ) ) ,  ( 2nd `  ( g `
 ( m  + 
1 ) ) )
>. )
8886, 87syl6reqr 2503 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( g `
 ( m  + 
1 ) ) ) ( ball `  D
) ( 2nd `  (
g `  ( m  +  1 ) ) ) )  =  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) ) )
897mopnuni 21449 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
905, 89syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  =  U. J
)
9190adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  X  = 
U. J )
9283, 88, 913sstr3d 3473 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  U. J
)
93 eqid 2450 . . . . . . . . . . . . 13  |-  U. J  =  U. J
9493sscls 20064 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) )  C_  U. J )  ->  (
( ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) ) )
9577, 92, 94syl2anc 666 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( cls `  J
) `  ( ( ball `  D ) `  ( g `  (
m  +  1 ) ) ) ) )
9633simp3d 1021 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( cls `  J ) `
 ( ( ball `  D ) `  (
g `  ( m  +  1 ) ) ) )  C_  (
( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
9795, 96sstrd 3441 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) )  C_  (
( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
98973adant2 1026 . . . . . . . . 9  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) )  C_  ( ( ( ball `  D ) `  (
g `  m )
)  \  ( M `  m ) ) )
997, 1, 8, 9, 10, 11, 6, 12, 13bcthlem3 22287 . . . . . . . . . 10  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  ( m  +  1
)  e.  NN )  ->  x  e.  ( ( ball `  D
) `  ( g `  ( m  +  1 ) ) ) )
10019, 99syl3an3 1302 . . . . . . . . 9  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  x  e.  ( (
ball `  D ) `  ( g `  (
m  +  1 ) ) ) )
10198, 100sseldd 3432 . . . . . . . 8  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  x  e.  ( ( ( ball `  D
) `  ( g `  m ) )  \ 
( M `  m
) ) )
102101eldifbd 3416 . . . . . . 7  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x  /\  m  e.  NN )  ->  -.  x  e.  ( M `  m ) )
1031023expa 1207 . . . . . 6  |-  ( ( ( ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  /\  m  e.  NN )  ->  -.  x  e.  ( M `  m ) )
104103ralrimiva 2801 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  A. m  e.  NN  -.  x  e.  ( M `  m )
)
105 eluni2 4201 . . . . . . . . 9  |-  ( x  e.  U. ran  M  <->  E. y  e.  ran  M  x  e.  y )
106 ffn 5726 . . . . . . . . . . 11  |-  ( M : NN --> ( Clsd `  J )  ->  M  Fn  NN )
1079, 106syl 17 . . . . . . . . . 10  |-  ( ph  ->  M  Fn  NN )
108 eleq2 2517 . . . . . . . . . . 11  |-  ( y  =  ( M `  m )  ->  (
x  e.  y  <->  x  e.  ( M `  m ) ) )
109108rexrn 6022 . . . . . . . . . 10  |-  ( M  Fn  NN  ->  ( E. y  e.  ran  M  x  e.  y  <->  E. m  e.  NN  x  e.  ( M `  m ) ) )
110107, 109syl 17 . . . . . . . . 9  |-  ( ph  ->  ( E. y  e. 
ran  M  x  e.  y 
<->  E. m  e.  NN  x  e.  ( M `  m ) ) )
111105, 110syl5bb 261 . . . . . . . 8  |-  ( ph  ->  ( x  e.  U. ran  M  <->  E. m  e.  NN  x  e.  ( M `  m ) ) )
112111notbid 296 . . . . . . 7  |-  ( ph  ->  ( -.  x  e. 
U. ran  M  <->  -.  E. m  e.  NN  x  e.  ( M `  m ) ) )
113 ralnex 2833 . . . . . . 7  |-  ( A. m  e.  NN  -.  x  e.  ( M `  m )  <->  -.  E. m  e.  NN  x  e.  ( M `  m ) )
114112, 113syl6bbr 267 . . . . . 6  |-  ( ph  ->  ( -.  x  e. 
U. ran  M  <->  A. m  e.  NN  -.  x  e.  ( M `  m
) ) )
115114biimpar 488 . . . . 5  |-  ( (
ph  /\  A. m  e.  NN  -.  x  e.  ( M `  m
) )  ->  -.  x  e.  U. ran  M
)
116104, 115syldan 473 . . . 4  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  -.  x  e.  U.
ran  M )
11774, 116eldifd 3414 . . 3  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  x  e.  ( ( C ( ball `  D ) R ) 
\  U. ran  M ) )
118 ne0i 3736 . . 3  |-  ( x  e.  ( ( C ( ball `  D
) R )  \  U. ran  M )  -> 
( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
119117, 118syl 17 . 2  |-  ( (
ph  /\  ( 1st  o.  g ) ( ~~> t `  J ) x )  ->  ( ( C ( ball `  D
) R )  \  U. ran  M )  =/=  (/) )
12066, 119exlimddv 1780 1  |-  ( ph  ->  ( ( C (
ball `  D ) R )  \  U. ran  M )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443   E.wex 1662    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737   _Vcvv 3044    \ cdif 3400    C_ wss 3403   (/)c0 3730   <.cop 3973   U.cuni 4197   class class class wbr 4401   {copab 4459    X. cxp 4831   dom cdm 4833   ran crn 4834    o. ccom 4837   Fun wfun 5575    Fn wfn 5576   -->wf 5577   -onto->wfo 5579   ` cfv 5581  (class class class)co 6288    |-> cmpt2 6290   1stc1st 6788   2ndc2nd 6789   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539   RR*cxr 9671    < clt 9672    / cdiv 10266   NNcn 10606   RR+crp 11299   *Metcxmt 18948   Metcme 18949   ballcbl 18950   MetOpencmopn 18953   Topctop 19910   Clsdccld 20024   clsccl 20026   ~~> tclm 20235   Caucca 22216   CMetcms 22217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-sup 7953  df-inf 7954  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ico 11638  df-rest 15314  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-top 19914  df-bases 19915  df-topon 19916  df-cld 20027  df-ntr 20028  df-cls 20029  df-nei 20107  df-lm 20238  df-fil 20854  df-fm 20946  df-flim 20947  df-flf 20948  df-cfil 22218  df-cau 22219  df-cmet 22220
This theorem is referenced by:  bcthlem5  22289
  Copyright terms: Public domain W3C validator