MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem1 Structured version   Unicode version

Theorem bcthlem1 20794
Description: Lemma for bcth 20799. Substitutions for the function  F. (Contributed by Mario Carneiro, 9-Jan-2014.)
Hypotheses
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
bcthlem.4  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bcthlem.5  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
Assertion
Ref Expression
bcthlem1  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
Distinct variable groups:    k, r, x, z, A    B, k,
r, x, z    C, r, x    D, k, r, x, z    k, F, r, x, z    k, J, r, x, z    k, M, r, x, z    ph, k,
r, x, z    k, X, r, x, z
Allowed substitution hints:    C( z, k)

Proof of Theorem bcthlem1
StepHypRef Expression
1 opabssxp 4907 . . . . . . 7  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } 
C_  ( X  X.  RR+ )
2 bcthlem.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3 elfvdm 5713 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
42, 3syl 16 . . . . . . . 8  |-  ( ph  ->  X  e.  dom  CMet )
5 reex 9369 . . . . . . . . 9  |-  RR  e.  _V
6 rpssre 10997 . . . . . . . . 9  |-  RR+  C_  RR
75, 6ssexi 4434 . . . . . . . 8  |-  RR+  e.  _V
8 xpexg 6506 . . . . . . . 8  |-  ( ( X  e.  dom  CMet  /\  RR+  e.  _V )  -> 
( X  X.  RR+ )  e.  _V )
94, 7, 8sylancl 657 . . . . . . 7  |-  ( ph  ->  ( X  X.  RR+ )  e.  _V )
10 ssexg 4435 . . . . . . 7  |-  ( ( { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } 
C_  ( X  X.  RR+ )  /\  ( X  X.  RR+ )  e.  _V )  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  e.  _V )
111, 9, 10sylancr 658 . . . . . 6  |-  ( ph  ->  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  e.  _V )
12 oveq2 6098 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
1  /  k )  =  ( 1  /  A ) )
1312breq2d 4301 . . . . . . . . . 10  |-  ( k  =  A  ->  (
r  <  ( 1  /  k )  <->  r  <  ( 1  /  A ) ) )
14 fveq2 5688 . . . . . . . . . . . 12  |-  ( k  =  A  ->  ( M `  k )  =  ( M `  A ) )
1514difeq2d 3471 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) )
1615sseq2d 3381 . . . . . . . . . 10  |-  ( k  =  A  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  A )
) ) )
1713, 16anbi12d 705 . . . . . . . . 9  |-  ( k  =  A  ->  (
( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( r  <  ( 1  /  A
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  A )
) ) ) )
1817anbi2d 698 . . . . . . . 8  |-  ( k  =  A  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) ) ) ) )
1918opabbidv 4352 . . . . . . 7  |-  ( k  =  A  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) ) ) } )
20 fveq2 5688 . . . . . . . . . . . 12  |-  ( z  =  B  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  B )
)
2120difeq1d 3470 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
( ( ball `  D
) `  z )  \  ( M `  A ) )  =  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) )
2221sseq2d 3381 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) )
2322anbi2d 698 . . . . . . . . 9  |-  ( z  =  B  ->  (
( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) )  <->  ( r  <  ( 1  /  A
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) ) )
2423anbi2d 698 . . . . . . . 8  |-  ( z  =  B  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  A ) ) ) )  <->  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
2524opabbidv 4352 . . . . . . 7  |-  ( z  =  B  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  A )
) ) ) }  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } )
26 bcthlem.5 . . . . . . 7  |-  F  =  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )
2719, 25, 26ovmpt2g 6224 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ )  /\  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) }  e.  _V )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
2811, 27syl3an3 1248 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ )  /\  ph )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
29283expa 1182 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) )  /\  ph )  ->  ( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } )
3029ancoms 450 . . 3  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( A F B )  =  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } )
3130eleq2d 2508 . 2  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) } ) )
321sseli 3349 . . 3  |-  ( C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  ->  C  e.  ( X  X.  RR+ )
)
33 simp1 983 . . 3  |-  ( ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) )  ->  C  e.  ( X  X.  RR+ ) )
34 1st2nd2 6612 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
3534eleq1d 2507 . . . . 5  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <->  <. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) } ) )
36 fvex 5698 . . . . . 6  |-  ( 1st `  C )  e.  _V
37 fvex 5698 . . . . . 6  |-  ( 2nd `  C )  e.  _V
38 eleq1 2501 . . . . . . . 8  |-  ( x  =  ( 1st `  C
)  ->  ( x  e.  X  <->  ( 1st `  C
)  e.  X ) )
39 eleq1 2501 . . . . . . . 8  |-  ( r  =  ( 2nd `  C
)  ->  ( r  e.  RR+  <->  ( 2nd `  C
)  e.  RR+ )
)
4038, 39bi2anan9 863 . . . . . . 7  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( x  e.  X  /\  r  e.  RR+ )  <->  ( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ ) ) )
41 simpr 458 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  r  =  ( 2nd `  C
) )
4241breq1d 4299 . . . . . . . 8  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
r  <  ( 1  /  A )  <->  ( 2nd `  C )  <  (
1  /  A ) ) )
43 oveq12 6099 . . . . . . . . . 10  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
x ( ball `  D
) r )  =  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )
4443fveq2d 5692 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) ) )
4544sseq1d 3380 . . . . . . . 8  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )
4642, 45anbi12d 705 . . . . . . 7  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) )  <->  ( ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
4740, 46anbi12d 705 . . . . . 6  |-  ( ( x  =  ( 1st `  C )  /\  r  =  ( 2nd `  C
) )  ->  (
( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( ( ( 1st `  C )  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
4836, 37, 47opelopaba 4603 . . . . 5  |-  ( <.
( 1st `  C
) ,  ( 2nd `  C ) >.  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) }  <->  ( (
( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
4935, 48syl6bb 261 . . . 4  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( ( ( 1st `  C )  e.  X  /\  ( 2nd `  C
)  e.  RR+ )  /\  ( ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
5034eleq1d 2507 . . . . . . 7  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  ( X  X.  RR+ ) 
<-> 
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  ( X  X.  RR+ )
) )
51 opelxp 4865 . . . . . . 7  |-  ( <.
( 1st `  C
) ,  ( 2nd `  C ) >.  e.  ( X  X.  RR+ )  <->  ( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ ) )
5250, 51syl6rbb 262 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  <->  C  e.  ( X  X.  RR+ )
) )
5334fveq2d 5692 . . . . . . . . . 10  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( ball `  D ) `  C )  =  ( ( ball `  D
) `  <. ( 1st `  C ) ,  ( 2nd `  C )
>. ) )
54 df-ov 6093 . . . . . . . . . 10  |-  ( ( 1st `  C ) ( ball `  D
) ( 2nd `  C
) )  =  ( ( ball `  D
) `  <. ( 1st `  C ) ,  ( 2nd `  C )
>. )
5553, 54syl6reqr 2492 . . . . . . . . 9  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) )  =  ( ( ball `  D
) `  C )
)
5655fveq2d 5692 . . . . . . . 8  |-  ( C  e.  ( X  X.  RR+ )  ->  ( ( cls `  J ) `  ( ( 1st `  C
) ( ball `  D
) ( 2nd `  C
) ) )  =  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) ) )
5756sseq1d 3380 . . . . . . 7  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) )  <->  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) ) )
5857anbi2d 698 . . . . . 6  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) )  <-> 
( ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
5952, 58anbi12d 705 . . . . 5  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( ( 2nd `  C )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) ) )
60 3anass 964 . . . . 5  |-  ( ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C )  < 
( 1  /  A
)  /\  ( ( cls `  J ) `  ( ( ball `  D
) `  C )
)  C_  ( (
( ball `  D ) `  B )  \  ( M `  A )
) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( ( 2nd `  C )  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6159, 60syl6bbr 263 . . . 4  |-  ( C  e.  ( X  X.  RR+ )  ->  ( (
( ( 1st `  C
)  e.  X  /\  ( 2nd `  C )  e.  RR+ )  /\  (
( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( 1st `  C ) (
ball `  D )
( 2nd `  C
) ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )  <->  ( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6249, 61bitrd 253 . . 3  |-  ( C  e.  ( X  X.  RR+ )  ->  ( C  e.  { <. x ,  r
>.  |  ( (
x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
6332, 33, 62pm5.21nii 353 . 2  |-  ( C  e.  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  A )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  B )  \  ( M `  A )
) ) ) }  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) )
6431, 63syl6bb 261 1  |-  ( (
ph  /\  ( A  e.  NN  /\  B  e.  ( X  X.  RR+ ) ) )  -> 
( C  e.  ( A F B )  <-> 
( C  e.  ( X  X.  RR+ )  /\  ( 2nd `  C
)  <  ( 1  /  A )  /\  ( ( cls `  J
) `  ( ( ball `  D ) `  C ) )  C_  ( ( ( ball `  D ) `  B
)  \  ( M `  A ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    \ cdif 3322    C_ wss 3325   <.cop 3880   class class class wbr 4289   {copab 4346    X. cxp 4834   dom cdm 4836   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   1stc1st 6574   2ndc2nd 6575   RRcr 9277   1c1 9279    < clt 9414    / cdiv 9989   NNcn 10318   RR+crp 10987   ballcbl 17762   MetOpencmopn 17765   clsccl 18581   CMetcms 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-rp 10988
This theorem is referenced by:  bcthlem2  20795  bcthlem3  20796  bcthlem4  20797
  Copyright terms: Public domain W3C validator