MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Unicode version

Theorem bcth 18583
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having an empty interior), so some subset  M `
 k must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 18582 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
bcth  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Distinct variable groups:    D, k    k, J    k, M    k, X

Proof of Theorem bcth
StepHypRef Expression
1 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 733 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  D  e.  ( CMet `  X
) )
3 eleq1 2313 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  X  <->  y  e.  X ) )
4 eleq1 2313 . . . . . . . . . . 11  |-  ( r  =  m  ->  (
r  e.  RR+  <->  m  e.  RR+ ) )
53, 4bi2anan9 848 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( x  e.  X  /\  r  e.  RR+ )  <->  ( y  e.  X  /\  m  e.  RR+ ) ) )
6 simpr 449 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  r  =  m )
76breq1d 3930 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( r  <  (
1  /  k )  <-> 
m  <  ( 1  /  k ) ) )
8 oveq12 5719 . . . . . . . . . . . . 13  |-  ( ( x  =  y  /\  r  =  m )  ->  ( x ( ball `  D ) r )  =  ( y (
ball `  D )
m ) )
98fveq2d 5381 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( y
( ball `  D )
m ) ) )
109sseq1d 3126 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  <->  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )
117, 10anbi12d 694 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( r  < 
( 1  /  k
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  k
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) ) ) )
125, 11anbi12d 694 . . . . . . . . 9  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
1312cbvopabv 3985 . . . . . . . 8  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }
14 oveq2 5718 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
1  /  k )  =  ( 1  /  n ) )
1514breq2d 3932 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
m  <  ( 1  /  k )  <->  m  <  ( 1  /  n ) ) )
16 fveq2 5377 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( M `  k )  =  ( M `  n ) )
1716difeq2d 3211 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) )
1817sseq2d 3127 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) )
1915, 18anbi12d 694 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) ) )
2019anbi2d 687 . . . . . . . . 9  |-  ( k  =  n  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) ) ) )
2120opabbidv 3979 . . . . . . . 8  |-  ( k  =  n  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
2213, 21syl5eq 2297 . . . . . . 7  |-  ( k  =  n  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
23 fveq2 5377 . . . . . . . . . . . 12  |-  ( z  =  g  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  g )
)
2423difeq1d 3210 . . . . . . . . . . 11  |-  ( z  =  g  ->  (
( ( ball `  D
) `  z )  \  ( M `  n ) )  =  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) )
2524sseq2d 3127 . . . . . . . . . 10  |-  ( z  =  g  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) )
2625anbi2d 687 . . . . . . . . 9  |-  ( z  =  g  ->  (
( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) ) )
2726anbi2d 687 . . . . . . . 8  |-  ( z  =  g  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) ) ) ) )
2827opabbidv 3979 . . . . . . 7  |-  ( z  =  g  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
2922, 28cbvmpt2v 5778 . . . . . 6  |-  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )  =  ( n  e.  NN ,  g  e.  ( X  X.  RR+ )  |->  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
30 simplr 734 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  M : NN
--> ( Clsd `  J
) )
31 simpr 449 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
3216fveq2d 5381 . . . . . . . . 9  |-  ( k  =  n  ->  (
( int `  J
) `  ( M `  k ) )  =  ( ( int `  J
) `  ( M `  n ) ) )
3332eqeq1d 2261 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  ( ( int `  J
) `  ( M `  n ) )  =  (/) ) )
3433cbvralv 2708 . . . . . . 7  |-  ( A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) 
<-> 
A. n  e.  NN  ( ( int `  J
) `  ( M `  n ) )  =  (/) )
3531, 34sylib 190 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. n  e.  NN  ( ( int `  J ) `  ( M `  n )
)  =  (/) )
361, 2, 29, 30, 35bcthlem5 18582 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  ( ( int `  J ) `
 U. ran  M
)  =  (/) )
3736ex 425 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  ( A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/)  ->  ( ( int `  J ) `  U. ran  M )  =  (/) ) )
3837necon3ad 2448 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  (
( ( int `  J
) `  U. ran  M
)  =/=  (/)  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) ) )
39383impia 1153 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )
40 df-ne 2414 . . . 4  |-  ( ( ( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4140rexbii 2532 . . 3  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
42 rexnal 2518 . . 3  |-  ( E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4341, 42bitri 242 . 2  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4439, 43sylibr 205 1  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    \ cdif 3075    C_ wss 3078   (/)c0 3362   U.cuni 3727   class class class wbr 3920   {copab 3973    X. cxp 4578   ran crn 4581   -->wf 4588   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   1c1 8618    < clt 8747    / cdiv 9303   NNcn 9626   RR+crp 10233   ballcbl 16203   MetOpencmopn 16204   Clsdccld 16585   intcnt 16586   clsccl 16587   CMetcms 18512
This theorem is referenced by:  bcth2  18584  bcth3  18585
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-dc 7956  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-er 6546  df-map 6660  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ico 10540  df-rest 13201  df-topgen 13218  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-top 16468  df-bases 16470  df-topon 16471  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lm 16791  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-cfil 18513  df-cau 18514  df-cmet 18515
  Copyright terms: Public domain W3C validator