MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Unicode version

Theorem bcth 21934
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset  M `  k must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 21933 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
bcth  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Distinct variable groups:    D, k    k, J    k, M    k, X

Proof of Theorem bcth
Dummy variables  n  r  x  z  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 751 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  D  e.  ( CMet `  X
) )
3 eleq1 2526 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  X  <->  y  e.  X ) )
4 eleq1 2526 . . . . . . . . . . 11  |-  ( r  =  m  ->  (
r  e.  RR+  <->  m  e.  RR+ ) )
53, 4bi2anan9 871 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( x  e.  X  /\  r  e.  RR+ )  <->  ( y  e.  X  /\  m  e.  RR+ ) ) )
6 simpr 459 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  r  =  m )
76breq1d 4449 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( r  <  (
1  /  k )  <-> 
m  <  ( 1  /  k ) ) )
8 oveq12 6279 . . . . . . . . . . . . 13  |-  ( ( x  =  y  /\  r  =  m )  ->  ( x ( ball `  D ) r )  =  ( y (
ball `  D )
m ) )
98fveq2d 5852 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( y
( ball `  D )
m ) ) )
109sseq1d 3516 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  <->  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )
117, 10anbi12d 708 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( r  < 
( 1  /  k
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  k
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) ) ) )
125, 11anbi12d 708 . . . . . . . . 9  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
1312cbvopabv 4508 . . . . . . . 8  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }
14 oveq2 6278 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
1  /  k )  =  ( 1  /  n ) )
1514breq2d 4451 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
m  <  ( 1  /  k )  <->  m  <  ( 1  /  n ) ) )
16 fveq2 5848 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( M `  k )  =  ( M `  n ) )
1716difeq2d 3608 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) )
1817sseq2d 3517 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) )
1915, 18anbi12d 708 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) ) )
2019anbi2d 701 . . . . . . . . 9  |-  ( k  =  n  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) ) ) )
2120opabbidv 4502 . . . . . . . 8  |-  ( k  =  n  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
2213, 21syl5eq 2507 . . . . . . 7  |-  ( k  =  n  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
23 fveq2 5848 . . . . . . . . . . . 12  |-  ( z  =  g  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  g )
)
2423difeq1d 3607 . . . . . . . . . . 11  |-  ( z  =  g  ->  (
( ( ball `  D
) `  z )  \  ( M `  n ) )  =  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) )
2524sseq2d 3517 . . . . . . . . . 10  |-  ( z  =  g  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) )
2625anbi2d 701 . . . . . . . . 9  |-  ( z  =  g  ->  (
( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) ) )
2726anbi2d 701 . . . . . . . 8  |-  ( z  =  g  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) ) ) ) )
2827opabbidv 4502 . . . . . . 7  |-  ( z  =  g  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
2922, 28cbvmpt2v 6350 . . . . . 6  |-  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )  =  ( n  e.  NN ,  g  e.  ( X  X.  RR+ )  |->  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
30 simplr 753 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  M : NN
--> ( Clsd `  J
) )
31 simpr 459 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
3216fveq2d 5852 . . . . . . . . 9  |-  ( k  =  n  ->  (
( int `  J
) `  ( M `  k ) )  =  ( ( int `  J
) `  ( M `  n ) ) )
3332eqeq1d 2456 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  ( ( int `  J
) `  ( M `  n ) )  =  (/) ) )
3433cbvralv 3081 . . . . . . 7  |-  ( A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) 
<-> 
A. n  e.  NN  ( ( int `  J
) `  ( M `  n ) )  =  (/) )
3531, 34sylib 196 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. n  e.  NN  ( ( int `  J ) `  ( M `  n )
)  =  (/) )
361, 2, 29, 30, 35bcthlem5 21933 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  ( ( int `  J ) `
 U. ran  M
)  =  (/) )
3736ex 432 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  ( A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/)  ->  ( ( int `  J ) `  U. ran  M )  =  (/) ) )
3837necon3ad 2664 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  (
( ( int `  J
) `  U. ran  M
)  =/=  (/)  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) ) )
39383impia 1191 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )
40 df-ne 2651 . . . 4  |-  ( ( ( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4140rexbii 2956 . . 3  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
42 rexnal 2902 . . 3  |-  ( E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4341, 42bitri 249 . 2  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4439, 43sylibr 212 1  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805    \ cdif 3458    C_ wss 3461   (/)c0 3783   U.cuni 4235   class class class wbr 4439   {copab 4496    X. cxp 4986   ran crn 4989   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   1c1 9482    < clt 9617    / cdiv 10202   NNcn 10531   RR+crp 11221   ballcbl 18600   MetOpencmopn 18603   Clsdccld 19684   intcnt 19685   clsccl 19686   CMetcms 21859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-dc 8817  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ico 11538  df-rest 14912  df-topgen 14933  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-top 19566  df-bases 19568  df-topon 19569  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lm 19897  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-cfil 21860  df-cau 21861  df-cmet 21862
This theorem is referenced by:  bcth2  21935  bcth3  21936
  Copyright terms: Public domain W3C validator