MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth Structured version   Unicode version

Theorem bcth 20820
Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset  M `  k must have a nonempty interior. Theorem 4.7-2 of [Kreyszig] p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 20819 for an overview of the proof. (Contributed by NM, 28-Oct-2007.) (Proof shortened by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
bcth.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
bcth  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Distinct variable groups:    D, k    k, J    k, M    k, X

Proof of Theorem bcth
Dummy variables  n  r  x  z  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcth.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 753 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  D  e.  ( CMet `  X
) )
3 eleq1 2498 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  X  <->  y  e.  X ) )
4 eleq1 2498 . . . . . . . . . . 11  |-  ( r  =  m  ->  (
r  e.  RR+  <->  m  e.  RR+ ) )
53, 4bi2anan9 868 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( x  e.  X  /\  r  e.  RR+ )  <->  ( y  e.  X  /\  m  e.  RR+ ) ) )
6 simpr 461 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  r  =  m )
76breq1d 4297 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( r  <  (
1  /  k )  <-> 
m  <  ( 1  /  k ) ) )
8 oveq12 6095 . . . . . . . . . . . . 13  |-  ( ( x  =  y  /\  r  =  m )  ->  ( x ( ball `  D ) r )  =  ( y (
ball `  D )
m ) )
98fveq2d 5690 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  =  ( ( cls `  J
) `  ( y
( ball `  D )
m ) ) )
109sseq1d 3378 . . . . . . . . . . 11  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
)  <->  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) )
117, 10anbi12d 710 . . . . . . . . . 10  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( r  < 
( 1  /  k
)  /\  ( ( cls `  J ) `  ( x ( ball `  D ) r ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  k
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  k )
) ) ) )
125, 11anbi12d 710 . . . . . . . . 9  |-  ( ( x  =  y  /\  r  =  m )  ->  ( ( ( x  e.  X  /\  r  e.  RR+ )  /\  (
r  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( x
( ball `  D )
r ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) ) ) )
1312cbvopabv 4356 . . . . . . . 8  |-  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }
14 oveq2 6094 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
1  /  k )  =  ( 1  /  n ) )
1514breq2d 4299 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
m  <  ( 1  /  k )  <->  m  <  ( 1  /  n ) ) )
16 fveq2 5686 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( M `  k )  =  ( M `  n ) )
1716difeq2d 3469 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( ( ball `  D
) `  z )  \  ( M `  k ) )  =  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) )
1817sseq2d 3379 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) )
1915, 18anbi12d 710 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  z )  \  ( M `  n )
) ) ) )
2019anbi2d 703 . . . . . . . . 9  |-  ( k  =  n  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  k )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  k ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) ) ) )
2120opabbidv 4350 . . . . . . . 8  |-  ( k  =  n  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
2213, 21syl5eq 2482 . . . . . . 7  |-  ( k  =  n  ->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) } )
23 fveq2 5686 . . . . . . . . . . . 12  |-  ( z  =  g  ->  (
( ball `  D ) `  z )  =  ( ( ball `  D
) `  g )
)
2423difeq1d 3468 . . . . . . . . . . 11  |-  ( z  =  g  ->  (
( ( ball `  D
) `  z )  \  ( M `  n ) )  =  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) )
2524sseq2d 3379 . . . . . . . . . 10  |-  ( z  =  g  ->  (
( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) )  <->  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) )
2625anbi2d 703 . . . . . . . . 9  |-  ( z  =  g  ->  (
( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) )  <->  ( m  <  ( 1  /  n
)  /\  ( ( cls `  J ) `  ( y ( ball `  D ) m ) )  C_  ( (
( ball `  D ) `  g )  \  ( M `  n )
) ) ) )
2726anbi2d 703 . . . . . . . 8  |-  ( z  =  g  ->  (
( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  z
)  \  ( M `  n ) ) ) )  <->  ( ( y  e.  X  /\  m  e.  RR+ )  /\  (
m  <  ( 1  /  n )  /\  ( ( cls `  J
) `  ( y
( ball `  D )
m ) )  C_  ( ( ( ball `  D ) `  g
)  \  ( M `  n ) ) ) ) ) )
2827opabbidv 4350 . . . . . . 7  |-  ( z  =  g  ->  { <. y ,  m >.  |  ( ( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  n )
) ) ) }  =  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
2922, 28cbvmpt2v 6161 . . . . . 6  |-  ( k  e.  NN ,  z  e.  ( X  X.  RR+ )  |->  { <. x ,  r >.  |  ( ( x  e.  X  /\  r  e.  RR+ )  /\  ( r  <  (
1  /  k )  /\  ( ( cls `  J ) `  (
x ( ball `  D
) r ) ) 
C_  ( ( (
ball `  D ) `  z )  \  ( M `  k )
) ) ) } )  =  ( n  e.  NN ,  g  e.  ( X  X.  RR+ )  |->  { <. y ,  m >.  |  (
( y  e.  X  /\  m  e.  RR+ )  /\  ( m  <  (
1  /  n )  /\  ( ( cls `  J ) `  (
y ( ball `  D
) m ) ) 
C_  ( ( (
ball `  D ) `  g )  \  ( M `  n )
) ) ) } )
30 simplr 754 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  M : NN
--> ( Clsd `  J
) )
31 simpr 461 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
3216fveq2d 5690 . . . . . . . . 9  |-  ( k  =  n  ->  (
( int `  J
) `  ( M `  k ) )  =  ( ( int `  J
) `  ( M `  n ) ) )
3332eqeq1d 2446 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  ( ( int `  J
) `  ( M `  n ) )  =  (/) ) )
3433cbvralv 2942 . . . . . . 7  |-  ( A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) 
<-> 
A. n  e.  NN  ( ( int `  J
) `  ( M `  n ) )  =  (/) )
3531, 34sylib 196 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  A. n  e.  NN  ( ( int `  J ) `  ( M `  n )
)  =  (/) )
361, 2, 29, 30, 35bcthlem5 20819 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  M : NN --> ( Clsd `  J ) )  /\  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )  ->  ( ( int `  J ) `
 U. ran  M
)  =  (/) )
3736ex 434 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  ( A. k  e.  NN  ( ( int `  J
) `  ( M `  k ) )  =  (/)  ->  ( ( int `  J ) `  U. ran  M )  =  (/) ) )
3837necon3ad 2639 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
) )  ->  (
( ( int `  J
) `  U. ran  M
)  =/=  (/)  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) ) )
39383impia 1184 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  -.  A. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =  (/) )
40 df-ne 2603 . . . 4  |-  ( ( ( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4140rexbii 2735 . . 3  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) )
42 rexnal 2721 . . 3  |-  ( E. k  e.  NN  -.  ( ( int `  J
) `  ( M `  k ) )  =  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4341, 42bitri 249 . 2  |-  ( E. k  e.  NN  (
( int `  J
) `  ( M `  k ) )  =/=  (/) 
<->  -.  A. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =  (/) )
4439, 43sylibr 212 1  |-  ( ( D  e.  ( CMet `  X )  /\  M : NN --> ( Clsd `  J
)  /\  ( ( int `  J ) `  U. ran  M )  =/=  (/) )  ->  E. k  e.  NN  ( ( int `  J ) `  ( M `  k )
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    \ cdif 3320    C_ wss 3323   (/)c0 3632   U.cuni 4086   class class class wbr 4287   {copab 4344    X. cxp 4833   ran crn 4836   -->wf 5409   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   1c1 9275    < clt 9410    / cdiv 9985   NNcn 10314   RR+crp 10983   ballcbl 17783   MetOpencmopn 17786   Clsdccld 18600   intcnt 18601   clsccl 18602   CMetcms 20745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-dc 8607  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ico 11298  df-rest 14353  df-topgen 14374  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-top 18483  df-bases 18485  df-topon 18486  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lm 18813  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-cfil 20746  df-cau 20747  df-cmet 20748
This theorem is referenced by:  bcth2  20821  bcth3  20822
  Copyright terms: Public domain W3C validator