MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcpasc Structured version   Unicode version

Theorem bcpasc 12381
Description: Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 10832 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 elfzp12 11761 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
3 nn0uz 11116 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleq2s 2562 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
51, 4syl 16 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
6 1p0e1 10644 . . . . . . . 8  |-  ( 1  +  0 )  =  1
7 bcn0 12370 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  0 )  =  1 )
8 0z 10871 . . . . . . . . . . 11  |-  0  e.  ZZ
9 1z 10890 . . . . . . . . . . 11  |-  1  e.  ZZ
10 zsubcl 10902 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  -  1 )  e.  ZZ )
118, 9, 10mp2an 670 . . . . . . . . . 10  |-  ( 0  -  1 )  e.  ZZ
12 0re 9585 . . . . . . . . . . . 12  |-  0  e.  RR
13 ltm1 10378 . . . . . . . . . . . 12  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
1412, 13ax-mp 5 . . . . . . . . . . 11  |-  ( 0  -  1 )  <  0
1514orci 388 . . . . . . . . . 10  |-  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) )
16 bcval4 12367 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 0  -  1 )  e.  ZZ  /\  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) ) )  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
1711, 15, 16mp3an23 1314 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
187, 17oveq12d 6288 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( 1  +  0 ) )
19 bcn0 12370 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
201, 19syl 16 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
216, 18, 203eqtr4a 2521 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( ( N  + 
1 )  _C  0
) )
22 oveq2 6278 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  K )  =  ( N  _C  0
) )
23 oveq1 6277 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  -  1 )  =  ( 0  -  1 ) )
2423oveq2d 6286 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  ( K  - 
1 ) )  =  ( N  _C  (
0  -  1 ) ) )
2522, 24oveq12d 6288 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) ) )
26 oveq2 6278 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  0 ) )
2725, 26eqeq12d 2476 . . . . . . 7  |-  ( K  =  0  ->  (
( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K )  <->  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) )  =  ( ( N  +  1 )  _C  0 ) ) )
2821, 27syl5ibrcom 222 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
29 simpr 459 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
30 0p1e1 10643 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3130oveq1i 6280 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
3229, 31syl6eleq 2552 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
33 nn0p1nn 10831 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
34 nnuz 11117 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3533, 34syl6eleq 2552 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  1 )
)
36 fzm1 11762 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) ) )
3736biimpa 482 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ( ZZ>= ` 
1 )  /\  K  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )
3835, 37sylan 469 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) )
39 nn0cn 10801 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
40 ax-1cn 9539 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 pncan 9817 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4239, 40, 41sylancl 660 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4342oveq2d 6286 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
4443eleq2d 2524 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( K  e.  ( 1 ... ( ( N  + 
1 )  -  1 ) )  <->  K  e.  ( 1 ... N
) ) )
4544biimpa 482 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  K  e.  ( 1 ... N ) )
46 1eluzge0 11125 . . . . . . . . . . . . . . 15  |-  1  e.  ( ZZ>= `  0 )
47 fzss1 11726 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
4846, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  C_  ( 0 ... N
)
4948sseli 3485 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
50 bcp1n 12376 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5149, 50syl 16 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
52 bcrpcl 12368 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
5349, 52syl 16 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  RR+ )
5453rpcnd 11261 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  CC )
55 elfzuz2 11694 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5655, 34syl6eleqr 2553 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
5756peano2nnd 10548 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  NN )
5857nncnd 10547 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  CC )
5956nncnd 10547 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
60 1cnd 9601 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
61 elfzelz 11691 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
6261zcnd 10966 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
6359, 60, 62addsubd 9943 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
64 fznn0sub 11720 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
65 nn0p1nn 10831 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
6664, 65syl 16 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
6763, 66eqeltrd 2542 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
6867nncnd 10547 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
6967nnne0d 10576 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =/=  0 )
7054, 58, 68, 69div12d 10352 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( N  +  1 )  x.  ( ( N  _C  K )  /  (
( N  +  1 )  -  K ) ) ) )
7167nnrpd 11257 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR+ )
7253, 71rpdivcld 11276 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  RR+ )
7372rpcnd 11261 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  CC )
7458, 73mulcomd 9606 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  x.  ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7570, 74eqtrd 2495 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7658, 62npcand 9926 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  +  K )  =  ( N  + 
1 ) )
7776oveq2d 6286 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7873, 68, 62adddid 9609 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
7975, 77, 783eqtr2d 2501 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8054, 68, 69divcan1d 10317 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  =  ( N  _C  K ) )
81 elfznn 11717 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
8281nnne0d 10576 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  K  =/=  0 )
8354, 68, 62, 69, 82divdiv2d 10348 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( ( ( N  _C  K )  x.  K )  / 
( ( N  + 
1 )  -  K
) ) )
84 bcm1k 12375 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
8559, 62, 60subsub3d 9952 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
8685oveq1d 6285 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  +  1 )  -  K )  /  K ) )
8786oveq2d 6286 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( N  _C  ( K  - 
1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K
) ) )
8884, 87eqtrd 2495 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( ( N  + 
1 )  -  K
)  /  K ) ) )
89 fzelp1 11736 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
9057nnzd 10964 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  ZZ )
91 elfzm1b 11760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ) )
9261, 90, 91syl2anc 659 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... ( N  + 
1 ) )  <->  ( K  -  1 )  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ) )
9389, 92mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) ) )
9459, 40, 41sylancl 660 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  1 )  =  N )
9594oveq2d 6286 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
9693, 95eleqtrd 2544 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
97 bcrpcl 12368 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9896, 97syl 16 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9998rpcnd 11261 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  CC )
10081nnrpd 11257 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  RR+ )
10171, 100rpdivcld 11276 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  RR+ )
102101rpcnd 11261 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  CC )
103101rpne0d 11264 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  =/=  0 )
10454, 99, 102, 103divmul3d 10350 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( ( N  + 
1 )  -  K
)  /  K ) )  =  ( N  _C  ( K  - 
1 ) )  <->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K ) ) ) )
10588, 104mpbird 232 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( N  _C  ( K  -  1
) ) )
10654, 62, 68, 69div23d 10353 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  x.  K
)  /  ( ( N  +  1 )  -  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  K ) )
10783, 105, 1063eqtr3rd 2504 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  K )  =  ( N  _C  ( K  -  1
) ) )
10880, 107oveq12d 6288 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  K ) )  =  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) ) )
10951, 79, 1083eqtrrd 2500 . . . . . . . . . . 11  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
11045, 109syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
111 oveq2 6278 . . . . . . . . . . . . 13  |-  ( K  =  ( N  + 
1 )  ->  ( N  _C  K )  =  ( N  _C  ( N  +  1 ) ) )
11233nnzd 10964 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
113 nn0re 10800 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  N  e.  RR )
114113ltp1d 10471 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  < 
( N  +  1 ) )
115114olcd 391 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  <  0  \/  N  <  ( N  +  1 ) ) )
116 bcval4 12367 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
117112, 115, 116mpd3an23 1324 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  _C  ( N  + 
1 ) )  =  0 )
118111, 117sylan9eqr 2517 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  K )  =  0 )
119 oveq1 6277 . . . . . . . . . . . . . . 15  |-  ( K  =  ( N  + 
1 )  ->  ( K  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
120119, 42sylan9eqr 2517 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( K  - 
1 )  =  N )
121120oveq2d 6286 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  ( N  _C  N ) )
122 bcnn 12372 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
123122adantr 463 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  N )  =  1 )
124121, 123eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  1 )
125118, 124oveq12d 6288 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( 0  +  1 ) )
126 oveq2 6278 . . . . . . . . . . . 12  |-  ( K  =  ( N  + 
1 )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  ( N  +  1 ) ) )
127 bcnn 12372 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
1281, 127syl 16 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
129126, 128sylan9eqr 2517 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  +  1 )  _C  K )  =  1 )
13030, 125, 1293eqtr4a 2521 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
131110, 130jaodan 783 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( K  e.  (
1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13238, 131syldan 468 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13332, 132syldan 468 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
134133ex 432 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
13528, 134jaod 378 . . . . 5  |-  ( N  e.  NN0  ->  ( ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
1365, 135sylbid 215 . . . 4  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
137136imp 427 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
138137adantlr 712 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
139 00id 9744 . . 3  |-  ( 0  +  0 )  =  0
140 fzelp1 11736 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
141140con3i 135 . . . . 5  |-  ( -.  K  e.  ( 0 ... ( N  + 
1 ) )  ->  -.  K  e.  (
0 ... N ) )
142 bcval3 12366 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1431423expa 1194 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
144141, 143sylan2 472 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  K )  =  0 )
145 simpll 751 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
146 simplr 753 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  K  e.  ZZ )
147 peano2zm 10903 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
148146, 147syl 16 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
14939adantr 463 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  CC )
150149, 40, 41sylancl 660 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  + 
1 )  -  1 )  =  N )
151150oveq2d 6286 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
152151eleq2d 2524 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... N ) ) )
153 id 22 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
1541nn0zd 10963 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
155153, 154, 91syl2anr 476 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ) )
156 fzp1ss 11735 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
1578, 156ax-mp 5 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
15831, 157eqsstr3i 3520 . . . . . . . . 9  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
159158sseli 3485 . . . . . . . 8  |-  ( K  e.  ( 1 ... ( N  +  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
160155, 159syl6bir 229 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
161152, 160sylbird 235 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
162161con3dimp 439 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  ( K  -  1
)  e.  ( 0 ... N ) )
163 bcval3 12366 . . . . 5  |-  ( ( N  e.  NN0  /\  ( K  -  1
)  e.  ZZ  /\  -.  ( K  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( K  -  1
) )  =  0 )
164145, 148, 162, 163syl3anc 1226 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( K  - 
1 ) )  =  0 )
165144, 164oveq12d 6288 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( 0  +  0 ) )
166145, 1syl 16 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  NN0 )
167 simpr 459 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )
168 bcval3 12366 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  +  1 )  _C  K )  =  0 )
169166, 146, 167, 168syl3anc 1226 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  +  1 )  _C  K )  =  0 )
170139, 165, 1693eqtr4a 2521 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
171138, 170pm2.61dan 789 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    C_ wss 3461   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   ...cfz 11675    _C cbc 12362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-seq 12090  df-fac 12336  df-bc 12363
This theorem is referenced by:  bccl  12382  bcn2m1  12384  bcn2p1  12385  hashbclem  12485  binomlem  13723  bcxmas  13729  srgbinomlem  17390  bcp1ctr  23752  binomfallfaclem2  29403  dvnmul  31979  bcpascm1  33194
  Copyright terms: Public domain W3C validator