MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1n Structured version   Unicode version

Theorem bcp1n 12438
Description: The proportion of one binomial coefficient to another with  N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1n  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )

Proof of Theorem bcp1n
StepHypRef Expression
1 elfz3nn0 11827 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
2 facp1 12402 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
31, 2syl 17 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
4 fznn0sub 11771 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
5 facp1 12402 . . . . . . . 8  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
64, 5syl 17 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
71nn0cnd 10895 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  e.  CC )
8 1cnd 9642 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  1  e.  CC )
9 elfznn0 11826 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
109nn0cnd 10895 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  CC )
117, 8, 10addsubd 9988 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
1211fveq2d 5853 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( ( N  +  1 )  -  K ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
1311oveq2d 6294 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  +  1 )  -  K ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
146, 12, 133eqtr4d 2453 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( ( N  +  1 )  -  K ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  + 
1 )  -  K
) ) )
1514oveq1d 6293 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  (
( N  +  1 )  -  K ) )  x.  ( ! `
 K ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  x.  ( ! `  K
) ) )
16 faccl 12407 . . . . . . . 8  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
174, 16syl 17 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
1817nncnd 10592 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
19 nn0p1nn 10876 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
204, 19syl 17 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
2111, 20eqeltrd 2490 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
2221nncnd 10592 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
23 faccl 12407 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
249, 23syl 17 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  K )  e.  NN )
2524nncnd 10592 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  K )  e.  CC )
2618, 22, 25mul32d 9824 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  +  1 )  -  K ) )  x.  ( ! `
 K ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) )  x.  ( ( N  + 
1 )  -  K
) ) )
2715, 26eqtrd 2443 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  (
( N  +  1 )  -  K ) )  x.  ( ! `
 K ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) )  x.  ( ( N  + 
1 )  -  K
) ) )
283, 27oveq12d 6296 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  +  1 ) )  /  ( ( ! `  ( ( N  +  1 )  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  +  1 )  -  K ) ) ) )
29 faccl 12407 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
301, 29syl 17 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  N )  e.  NN )
3130nncnd 10592 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  N )  e.  CC )
32 nn0p1nn 10876 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
331, 32syl 17 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  NN )
3433nncnd 10592 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  CC )
3517, 24nnmulcld 10624 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
36 nncn 10584 . . . . . 6  |-  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
37 nnne0 10609 . . . . . 6  |-  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =/=  0 )
3836, 37jca 530 . . . . 5  |-  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  CC  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  =/=  0 ) )
3935, 38syl 17 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  CC  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  =/=  0 ) )
4021nnne0d 10621 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  =/=  0 )
4122, 40jca 530 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  e.  CC  /\  ( ( N  + 
1 )  -  K
)  =/=  0 ) )
42 divmuldiv 10285 . . . 4  |-  ( ( ( ( ! `  N )  e.  CC  /\  ( N  +  1 )  e.  CC )  /\  ( ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC  /\  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =/=  0 )  /\  ( ( ( N  +  1 )  -  K )  e.  CC  /\  ( ( N  + 
1 )  -  K
)  =/=  0 ) ) )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  +  1 )  -  K ) ) ) )
4331, 34, 39, 41, 42syl22anc 1231 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  +  1 )  -  K ) ) ) )
4428, 43eqtr4d 2446 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  +  1 ) )  /  ( ( ! `  ( ( N  +  1 )  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
45 fzelp1 11787 . . 3  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
46 bcval2 12427 . . 3  |-  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  +  1 )  _C  K )  =  ( ( ! `
 ( N  + 
1 ) )  / 
( ( ! `  ( ( N  + 
1 )  -  K
) )  x.  ( ! `  K )
) ) )
4745, 46syl 17 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( ! `
 ( N  + 
1 ) )  / 
( ( ! `  ( ( N  + 
1 )  -  K
) )  x.  ( ! `  K )
) ) )
48 bcval2 12427 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
4948oveq1d 6293 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5044, 47, 493eqtr4d 2453 1  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   ` cfv 5569  (class class class)co 6278   CCcc 9520   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527    - cmin 9841    / cdiv 10247   NNcn 10576   NN0cn0 10836   ...cfz 11726   !cfa 12397    _C cbc 12424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-seq 12152  df-fac 12398  df-bc 12425
This theorem is referenced by:  bcp1nk  12439  bcpasc  12443  bcp1ctr  23935  bcm1n  28048  bcm1nt  29946
  Copyright terms: Public domain W3C validator