MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn1 Structured version   Unicode version

Theorem bcn1 12073
Description: Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )

Proof of Theorem bcn1
StepHypRef Expression
1 elnn0 10569 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1nn0 10583 . . . . . . . 8  |-  1  e.  NN0
3 nn0uz 10883 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtri 2505 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
54a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ( ZZ>= `  0 )
)
6 elnnuz 10885 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
76biimpi 194 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
8 elfzuzb 11434 . . . . . 6  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  ( ZZ>= `  0
)  /\  N  e.  ( ZZ>= `  1 )
) )
95, 7, 8sylanbrc 657 . . . . 5  |-  ( N  e.  NN  ->  1  e.  ( 0 ... N
) )
10 bcval2 12065 . . . . 5  |-  ( 1  e.  ( 0 ... N )  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
119, 10syl 16 . . . 4  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) ) ) )
12 facnn2 12044 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
13 fac1 12039 . . . . . . 7  |-  ( ! `
 1 )  =  1
1413oveq2i 6091 . . . . . 6  |-  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) )  =  ( ( ! `  ( N  -  1
) )  x.  1 )
15 nnm1nn0 10609 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
16 faccl 12045 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  NN0  ->  ( ! `
 ( N  - 
1 ) )  e.  NN )
1715, 16syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  NN )
1817nncnd 10326 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  CC )
1918mulid1d 9391 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  1 )  =  ( ! `  ( N  -  1
) ) )
2014, 19syl5eq 2477 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 1 ) )  =  ( ! `  ( N  -  1
) ) )
2112, 20oveq12d 6098 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! ` 
1 ) ) )  =  ( ( ( ! `  ( N  -  1 ) )  x.  N )  / 
( ! `  ( N  -  1 ) ) ) )
22 nncn 10318 . . . . 5  |-  ( N  e.  NN  ->  N  e.  CC )
2317nnne0d 10354 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  =/=  0 )
2422, 18, 23divcan3d 10100 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  ( N  -  1
) )  x.  N
)  /  ( ! `
 ( N  - 
1 ) ) )  =  N )
2511, 21, 243eqtrd 2469 . . 3  |-  ( N  e.  NN  ->  ( N  _C  1 )  =  N )
26 0nn0 10582 . . . . 5  |-  0  e.  NN0
27 1z 10664 . . . . 5  |-  1  e.  ZZ
28 0lt1 9850 . . . . . 6  |-  0  <  1
2928olci 391 . . . . 5  |-  ( 1  <  0  \/  0  <  1 )
30 bcval4 12067 . . . . 5  |-  ( ( 0  e.  NN0  /\  1  e.  ZZ  /\  (
1  <  0  \/  0  <  1 ) )  ->  ( 0  _C  1 )  =  0 )
3126, 27, 29, 30mp3an 1307 . . . 4  |-  ( 0  _C  1 )  =  0
32 oveq1 6087 . . . . 5  |-  ( N  =  0  ->  ( N  _C  1 )  =  ( 0  _C  1
) )
33 eqeq12 2445 . . . . 5  |-  ( ( ( N  _C  1
)  =  ( 0  _C  1 )  /\  N  =  0 )  ->  ( ( N  _C  1 )  =  N  <->  ( 0  _C  1 )  =  0 ) )
3432, 33mpancom 662 . . . 4  |-  ( N  =  0  ->  (
( N  _C  1
)  =  N  <->  ( 0  _C  1 )  =  0 ) )
3531, 34mpbiri 233 . . 3  |-  ( N  =  0  ->  ( N  _C  1 )  =  N )
3625, 35jaoi 379 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( N  _C  1 )  =  N )
371, 36sylbi 195 1  |-  ( N  e.  NN0  ->  ( N  _C  1 )  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1362    e. wcel 1755   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   0cc0 9270   1c1 9271    x. cmul 9275    < clt 9406    - cmin 9583    / cdiv 9981   NNcn 10310   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   ...cfz 11424   !cfa 12035    _C cbc 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-seq 11791  df-fac 12036  df-bc 12063
This theorem is referenced by:  bcnp1n  12074  bcn2m1  12084  bcn2p1  12085  bcnm1  27235  bpoly2  28047  bpoly3  28048  bpoly4  28049  jm2.23  29190
  Copyright terms: Public domain W3C validator