Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Unicode version

Theorem bcm1n 27423
Description: The proportion of one binomial coefficient to another with  N decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) )  =  ( ( N  -  K )  /  N ) )

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 12374 . . . . . . 7  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( N  - 
1 )  +  1 )  _C  K )  =  ( ( ( N  -  1 )  _C  K )  x.  ( ( ( N  -  1 )  +  1 )  /  (
( ( N  - 
1 )  +  1 )  -  K ) ) ) )
2 nnz 10898 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  ZZ )
32zcnd 10979 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 466 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  CC )
5 ax-1cn 9562 . . . . . . . . . . 11  |-  1  e.  CC
65a1i 11 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  1  e.  CC )
74, 6npcand 9946 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  +  1 )  =  N )
87oveq1d 6310 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  _C  K
)  =  ( N  _C  K ) )
97oveq1d 6310 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  -  K
)  =  ( N  -  K ) )
107, 9oveq12d 6313 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  /  (
( ( N  - 
1 )  +  1 )  -  K ) )  =  ( N  /  ( N  -  K ) ) )
1110oveq2d 6311 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  x.  (
( ( N  - 
1 )  +  1 )  /  ( ( ( N  -  1 )  +  1 )  -  K ) ) )  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) )
128, 11eqeq12d 2489 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( ( N  -  1 )  +  1 )  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( ( ( N  -  1 )  +  1 )  /  ( ( ( N  -  1 )  +  1 )  -  K ) ) )  <-> 
( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) ) )
131, 12syl5ib 219 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( N  /  ( N  -  K ) ) ) ) )
14133impia 1193 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  _C  K )  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  /  ( N  -  K ) ) ) )
15143anidm13 1286 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) )
16 elfznn0 11782 . . . . . . . . 9  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  NN0 )
1716adantr 465 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  NN0 )
18 simpr 461 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  NN )
1918nnnn0d 10864 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  NN0 )
20 elfzelz 11700 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  ZZ )
2120adantr 465 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  ZZ )
2221zred 10978 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  RR )
232adantl 466 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  ZZ )
2423zred 10978 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  RR )
25 elfzle2 11702 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  <_  ( N  -  1 ) )
2625adantr 465 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <_  ( N  -  1 ) )
27 zltlem1 10927 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
2820, 2, 27syl2an 477 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
2926, 28mpbird 232 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <  N )
3022, 24, 29ltled 9744 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <_  N )
31 elfz2nn0 11780 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
3217, 19, 30, 31syl3anbrc 1180 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  ( 0 ... N ) )
33 bcrpcl 12366 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
3432, 33syl 16 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  RR+ )
3534rpcnd 11270 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  CC )
3620zcnd 10979 . . . . . . . 8  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  CC )
3736adantr 465 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  CC )
384, 37subcld 9942 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  -  K
)  e.  CC )
3937, 4negsubdi2d 9958 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  -> 
-u ( K  -  N )  =  ( N  -  K ) )
4022, 24resubcld 9999 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  e.  RR )
4140recnd 9634 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  e.  CC )
424addid2d 9792 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 0  +  N
)  =  N )
4329, 42breqtrrd 4479 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <  ( 0  +  N ) )
44 0re 9608 . . . . . . . . . . . 12  |-  0  e.  RR
4544a1i 11 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  0  e.  RR )
4622, 24, 45ltsubaddd 10160 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( K  -  N )  <  0  <->  K  <  ( 0  +  N ) ) )
4743, 46mpbird 232 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  <  0 )
4847lt0ne0d 10130 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  =/=  0 )
4941, 48negne0d 9940 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  -> 
-u ( K  -  N )  =/=  0
)
5039, 49eqnetrrd 2761 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  -  K
)  =/=  0 )
514, 38, 50divcld 10332 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  /  ( N  -  K )
)  e.  CC )
52 bcrpcl 12366 . . . . . . 7  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  e.  RR+ )
5352adantr 465 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  e.  RR+ )
5453rpcnne0d 11277 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  e.  CC  /\  ( ( N  - 
1 )  _C  K
)  =/=  0 ) )
55 divmul2 10223 . . . . 5  |-  ( ( ( N  _C  K
)  e.  CC  /\  ( N  /  ( N  -  K )
)  e.  CC  /\  ( ( ( N  -  1 )  _C  K )  e.  CC  /\  ( ( N  - 
1 )  _C  K
)  =/=  0 ) )  ->  ( (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) )  =  ( N  / 
( N  -  K
) )  <->  ( N  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( N  /  ( N  -  K ) ) ) ) )
5635, 51, 54, 55syl3anc 1228 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  _C  K )  / 
( ( N  - 
1 )  _C  K
) )  =  ( N  /  ( N  -  K ) )  <-> 
( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) ) )
5715, 56mpbird 232 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  _C  K )  /  (
( N  -  1 )  _C  K ) )  =  ( N  /  ( N  -  K ) ) )
5857oveq2d 6311 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) ) )  =  ( 1  /  ( N  / 
( N  -  K
) ) ) )
5953rpcnd 11270 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  e.  CC )
60 bccl2 12381 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  NN )
6132, 60syl 16 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  NN )
6261nnne0d 10592 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  =/=  0 )
63 bccl2 12381 . . . . 5  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  e.  NN )
6463nnne0d 10592 . . . 4  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  =/=  0 )
6564adantr 465 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  =/=  0 )
6635, 59, 62, 65recdivd 10349 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) ) )  =  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) ) )
6718nnne0d 10592 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  =/=  0 )
684, 38, 67, 50recdivd 10349 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  ( N  /  ( N  -  K ) ) )  =  ( ( N  -  K )  /  N ) )
6958, 66, 683eqtr3d 2516 1  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) )  =  ( ( N  -  K )  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817   -ucneg 9818    / cdiv 10218   NNcn 10548   NN0cn0 10807   ZZcz 10876   RR+crp 11232   ...cfz 11684    _C cbc 12360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-seq 12088  df-fac 12334  df-bc 12361
This theorem is referenced by:  ballotlem2  28252
  Copyright terms: Public domain W3C validator