Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Unicode version

Theorem bcm1n 27929
Description: The proportion of one binomial coefficient to another with  N decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) )  =  ( ( N  -  K )  /  N ) )

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 12346 . . . . . . 7  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( N  - 
1 )  +  1 )  _C  K )  =  ( ( ( N  -  1 )  _C  K )  x.  ( ( ( N  -  1 )  +  1 )  /  (
( ( N  - 
1 )  +  1 )  -  K ) ) ) )
2 nnz 10845 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  ZZ )
32zcnd 10927 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 464 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  CC )
5 1cnd 9560 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  1  e.  CC )
64, 5npcand 9889 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  +  1 )  =  N )
76oveq1d 6247 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  _C  K
)  =  ( N  _C  K ) )
86oveq1d 6247 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  -  K
)  =  ( N  -  K ) )
96, 8oveq12d 6250 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  +  1 )  /  (
( ( N  - 
1 )  +  1 )  -  K ) )  =  ( N  /  ( N  -  K ) ) )
109oveq2d 6248 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  x.  (
( ( N  - 
1 )  +  1 )  /  ( ( ( N  -  1 )  +  1 )  -  K ) ) )  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) )
117, 10eqeq12d 2422 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( ( N  -  1 )  +  1 )  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( ( ( N  -  1 )  +  1 )  /  ( ( ( N  -  1 )  +  1 )  -  K ) ) )  <-> 
( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) ) )
121, 11syl5ib 219 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( N  /  ( N  -  K ) ) ) ) )
13123impia 1192 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN  /\  K  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  _C  K )  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  /  ( N  -  K ) ) ) )
14133anidm13 1286 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) )
15 elfznn0 11741 . . . . . . . . 9  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  NN0 )
1615adantr 463 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  NN0 )
17 simpr 459 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  NN )
1817nnnn0d 10811 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  NN0 )
19 elfzelz 11657 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  ZZ )
2019adantr 463 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  ZZ )
2120zred 10926 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  RR )
222adantl 464 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  ZZ )
2322zred 10926 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  e.  RR )
24 elfzle2 11659 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  <_  ( N  -  1 ) )
2524adantr 463 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <_  ( N  -  1 ) )
26 zltlem1 10875 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
2719, 2, 26syl2an 475 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
2825, 27mpbird 232 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <  N )
2921, 23, 28ltled 9683 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <_  N )
30 elfz2nn0 11739 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
3116, 18, 29, 30syl3anbrc 1179 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  ( 0 ... N ) )
32 bcrpcl 12338 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
3331, 32syl 17 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  RR+ )
3433rpcnd 11222 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  CC )
3519zcnd 10927 . . . . . . . 8  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  K  e.  CC )
3635adantr 463 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  e.  CC )
374, 36subcld 9885 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  -  K
)  e.  CC )
3836, 4negsubdi2d 9901 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  -> 
-u ( K  -  N )  =  ( N  -  K ) )
3921, 23resubcld 9946 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  e.  RR )
4039recnd 9570 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  e.  CC )
414addid2d 9733 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 0  +  N
)  =  N )
4228, 41breqtrrd 4418 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  K  <  ( 0  +  N ) )
43 0red 9545 . . . . . . . . . . 11  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  0  e.  RR )
4421, 23, 43ltsubaddd 10106 . . . . . . . . . 10  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( K  -  N )  <  0  <->  K  <  ( 0  +  N ) ) )
4542, 44mpbird 232 . . . . . . . . 9  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  <  0 )
4645lt0ne0d 10076 . . . . . . . 8  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( K  -  N
)  =/=  0 )
4740, 46negne0d 9883 . . . . . . 7  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  -> 
-u ( K  -  N )  =/=  0
)
4838, 47eqnetrrd 2695 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  -  K
)  =/=  0 )
494, 37, 48divcld 10279 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  /  ( N  -  K )
)  e.  CC )
50 bcrpcl 12338 . . . . . . 7  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  e.  RR+ )
5150adantr 463 . . . . . 6  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  e.  RR+ )
5251rpcnne0d 11229 . . . . 5  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  e.  CC  /\  ( ( N  - 
1 )  _C  K
)  =/=  0 ) )
53 divmul2 10170 . . . . 5  |-  ( ( ( N  _C  K
)  e.  CC  /\  ( N  /  ( N  -  K )
)  e.  CC  /\  ( ( ( N  -  1 )  _C  K )  e.  CC  /\  ( ( N  - 
1 )  _C  K
)  =/=  0 ) )  ->  ( (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) )  =  ( N  / 
( N  -  K
) )  <->  ( N  _C  K )  =  ( ( ( N  - 
1 )  _C  K
)  x.  ( N  /  ( N  -  K ) ) ) ) )
5434, 49, 52, 53syl3anc 1228 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  _C  K )  / 
( ( N  - 
1 )  _C  K
) )  =  ( N  /  ( N  -  K ) )  <-> 
( N  _C  K
)  =  ( ( ( N  -  1 )  _C  K )  x.  ( N  / 
( N  -  K
) ) ) ) )
5514, 54mpbird 232 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  _C  K )  /  (
( N  -  1 )  _C  K ) )  =  ( N  /  ( N  -  K ) ) )
5655oveq2d 6248 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) ) )  =  ( 1  /  ( N  / 
( N  -  K
) ) ) )
5751rpcnd 11222 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  e.  CC )
58 bccl2 12353 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  NN )
5931, 58syl 17 . . . 4  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  e.  NN )
6059nnne0d 10539 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( N  _C  K
)  =/=  0 )
61 bccl2 12353 . . . . 5  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  e.  NN )
6261nnne0d 10539 . . . 4  |-  ( K  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  _C  K )  =/=  0 )
6362adantr 463 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( N  - 
1 )  _C  K
)  =/=  0 )
6434, 57, 60, 63recdivd 10296 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  (
( N  _C  K
)  /  ( ( N  -  1 )  _C  K ) ) )  =  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) ) )
6517nnne0d 10539 . . 3  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  N  =/=  0 )
664, 37, 65, 48recdivd 10296 . 2  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( 1  /  ( N  /  ( N  -  K ) ) )  =  ( ( N  -  K )  /  N ) )
6756, 64, 663eqtr3d 2449 1  |-  ( ( K  e.  ( 0 ... ( N  - 
1 ) )  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  _C  K )  /  ( N  _C  K ) )  =  ( ( N  -  K )  /  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1403    e. wcel 1840    =/= wne 2596   class class class wbr 4392  (class class class)co 6232   CCcc 9438   0cc0 9440   1c1 9441    + caddc 9443    x. cmul 9445    < clt 9576    <_ cle 9577    - cmin 9759   -ucneg 9760    / cdiv 10165   NNcn 10494   NN0cn0 10754   ZZcz 10823   RR+crp 11181   ...cfz 11641    _C cbc 12332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-n0 10755  df-z 10824  df-uz 11044  df-rp 11182  df-fz 11642  df-seq 12060  df-fac 12306  df-bc 12333
This theorem is referenced by:  ballotlem2  28814
  Copyright terms: Public domain W3C validator