MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Structured version   Unicode version

Theorem bcm1k 12083
Description: The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 11448 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
2 nnuz 10888 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleqr 2529 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
43nnnn0d 10628 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN0 )
5 faccl 12053 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
64, 5syl 16 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  NN )
76nncnd 10330 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  CC )
8 fznn0sub 11479 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
9 nn0p1nn 10611 . . . . . . 7  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
108, 9syl 16 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
1110nncnd 10330 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  CC )
1210nnnn0d 10628 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN0 )
13 faccl 12053 . . . . . . . 8  |-  ( ( ( N  -  K
)  +  1 )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  e.  NN )
1412, 13syl 16 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  NN )
15 elfznn 11470 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
16 nnm1nn0 10613 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
17 faccl 12053 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1815, 16, 173syl 20 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1914, 18nnmulcld 10361 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN )
20 nncn 10322 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC )
21 nnne0 10346 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )
2220, 21jca 532 . . . . . 6  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2319, 22syl 16 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2415nncnd 10330 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
2515nnne0d 10358 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  =/=  0 )
2624, 25jca 532 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  CC  /\  K  =/=  0 ) )
27 divmuldiv 10023 . . . . 5  |-  ( ( ( ( ! `  N )  e.  CC  /\  ( ( N  -  K )  +  1 )  e.  CC )  /\  ( ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC  /\  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) ) )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
287, 11, 23, 26, 27syl22anc 1219 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
29 elfzel2 11443 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ZZ )
3029zcnd 10740 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
31 ax-1cn 9332 . . . . . . . . . 10  |-  1  e.  CC
3231a1i 11 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
3330, 24, 32subsubd 9739 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  -  K )  +  1 ) )
3433fveq2d 5690 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  ( K  - 
1 ) ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
3534oveq1d 6101 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )
3635oveq2d 6102 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  ( K  - 
1 ) ) )  x.  ( ! `  ( K  -  1
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) ) )
3733oveq1d 6101 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  -  K )  +  1 )  /  K ) )
3836, 37oveq12d 6104 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( ( N  -  K )  +  1 )  /  K
) ) )
39 facp1 12048 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
408, 39syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
4140eqcomd 2443 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
42 facnn2 12052 . . . . . . . 8  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4315, 42syl 16 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4441, 43oveq12d 6104 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 K ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
45 faccl 12053 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
468, 45syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
4746nncnd 10330 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
4815nnnn0d 10628 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN0 )
49 faccl 12053 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
5048, 49syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  NN )
5150nncnd 10330 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  CC )
5247, 51, 11mul32d 9571 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) )  x.  ( ! `  K
) ) )
5314nncnd 10330 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  CC )
5418nncnd 10330 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  CC )
5553, 54, 24mulassd 9401 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
5644, 52, 553eqtr4d 2480 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1
) ) )  x.  K ) )
5756oveq2d 6102 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
5828, 38, 573eqtr4d 2480 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  -  K
)  +  1 ) ) ) )
597, 11mulcomd 9399 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ! `  N
) ) )
6046, 50nnmulcld 10361 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
6160nncnd 10330 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
6261, 11mulcomd 9399 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6359, 62oveq12d 6104 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ( N  -  K
)  +  1 )  x.  ( ! `  N ) )  / 
( ( ( N  -  K )  +  1 )  x.  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ) )
6460nnne0d 10358 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =/=  0 )
6510nnne0d 10358 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  =/=  0 )
667, 61, 11, 64, 65divcan5d 10125 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  -  K )  +  1 )  x.  ( ! `  N )
)  /  ( ( ( N  -  K
)  +  1 )  x.  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6758, 63, 663eqtrrd 2475 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
68 0p1e1 10425 . . . . . 6  |-  ( 0  +  1 )  =  1
6968oveq1i 6096 . . . . 5  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
70 0z 10649 . . . . . 6  |-  0  e.  ZZ
71 fzp1ss 11498 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
7270, 71ax-mp 5 . . . . 5  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
7369, 72eqsstr3i 3382 . . . 4  |-  ( 1 ... N )  C_  ( 0 ... N
)
7473sseli 3347 . . 3  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
75 bcval2 12073 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
7674, 75syl 16 . 2  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
77 npcan 9611 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7830, 31, 77sylancl 662 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  =  N )
79 peano2zm 10680 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
80 uzid 10867 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
81 peano2uz 10900 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8229, 79, 80, 814syl 21 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8378, 82eqeltrrd 2513 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
84 fzss2 11490 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
8583, 84syl 16 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
86 elfzelz 11445 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
87 elfzm1b 11530 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
8886, 29, 87syl2anc 661 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... N )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) ) )
8988ibi 241 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
9085, 89sseldd 3352 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
91 bcval2 12073 . . . 4  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9290, 91syl 16 . . 3  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9392oveq1d 6101 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
9467, 76, 933eqtr4d 2480 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601    C_ wss 3323   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    - cmin 9587    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429   !cfa 12043    _C cbc 12070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-seq 11799  df-fac 12044  df-bc 12071
This theorem is referenced by:  bcp1nk  12085  bcpasc  12089  basellem5  22397  bpolydiflem  28148
  Copyright terms: Public domain W3C validator