MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Structured version   Unicode version

Theorem bcm1k 12212
Description: The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 11577 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
2 nnuz 11011 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleqr 2553 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
43nnnn0d 10751 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN0 )
5 faccl 12182 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
64, 5syl 16 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  NN )
76nncnd 10453 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  CC )
8 fznn0sub 11608 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
9 nn0p1nn 10734 . . . . . . 7  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
108, 9syl 16 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
1110nncnd 10453 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  CC )
1210nnnn0d 10751 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN0 )
13 faccl 12182 . . . . . . . 8  |-  ( ( ( N  -  K
)  +  1 )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  e.  NN )
1412, 13syl 16 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  NN )
15 elfznn 11599 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
16 nnm1nn0 10736 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
17 faccl 12182 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1815, 16, 173syl 20 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1914, 18nnmulcld 10484 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN )
20 nncn 10445 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC )
21 nnne0 10469 . . . . . . 7  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )
2220, 21jca 532 . . . . . 6  |-  ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2319, 22syl 16 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  e.  CC  /\  ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  =/=  0 ) )
2415nncnd 10453 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
2515nnne0d 10481 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  K  =/=  0 )
2624, 25jca 532 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  CC  /\  K  =/=  0 ) )
27 divmuldiv 10146 . . . . 5  |-  ( ( ( ( ! `  N )  e.  CC  /\  ( ( N  -  K )  +  1 )  e.  CC )  /\  ( ( ( ( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC  /\  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) ) )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
287, 11, 23, 26, 27syl22anc 1220 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
29 elfzel2 11572 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ZZ )
3029zcnd 10863 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
31 ax-1cn 9455 . . . . . . . . . 10  |-  1  e.  CC
3231a1i 11 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
3330, 24, 32subsubd 9862 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  -  K )  +  1 ) )
3433fveq2d 5806 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  ( K  - 
1 ) ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
3534oveq1d 6218 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )
3635oveq2d 6219 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  ( K  - 
1 ) ) )  x.  ( ! `  ( K  -  1
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) ) )
3733oveq1d 6218 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  -  K )  +  1 )  /  K ) )
3836, 37oveq12d 6221 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( ( N  -  K )  +  1 )  /  K
) ) )
39 facp1 12177 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
408, 39syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
4140eqcomd 2462 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
42 facnn2 12181 . . . . . . . 8  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4315, 42syl 16 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
4441, 43oveq12d 6221 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 K ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
45 faccl 12182 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
468, 45syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
4746nncnd 10453 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
4815nnnn0d 10751 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN0 )
49 faccl 12182 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
5048, 49syl 16 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  NN )
5150nncnd 10453 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  CC )
5247, 51, 11mul32d 9694 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) )  x.  ( ! `  K
) ) )
5314nncnd 10453 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  CC )
5418nncnd 10453 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  CC )
5553, 54, 24mulassd 9524 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
5644, 52, 553eqtr4d 2505 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1
) ) )  x.  K ) )
5756oveq2d 6219 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
5828, 38, 573eqtr4d 2505 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  -  K
)  +  1 ) ) ) )
597, 11mulcomd 9522 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ! `  N
) ) )
6046, 50nnmulcld 10484 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
6160nncnd 10453 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
6261, 11mulcomd 9522 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6359, 62oveq12d 6221 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ( N  -  K
)  +  1 )  x.  ( ! `  N ) )  / 
( ( ( N  -  K )  +  1 )  x.  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ) )
6460nnne0d 10481 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =/=  0 )
6510nnne0d 10481 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  =/=  0 )
667, 61, 11, 64, 65divcan5d 10248 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  -  K )  +  1 )  x.  ( ! `  N )
)  /  ( ( ( N  -  K
)  +  1 )  x.  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
6758, 63, 663eqtrrd 2500 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
68 0p1e1 10548 . . . . . 6  |-  ( 0  +  1 )  =  1
6968oveq1i 6213 . . . . 5  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
70 0z 10772 . . . . . 6  |-  0  e.  ZZ
71 fzp1ss 11627 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
7270, 71ax-mp 5 . . . . 5  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
7369, 72eqsstr3i 3498 . . . 4  |-  ( 1 ... N )  C_  ( 0 ... N
)
7473sseli 3463 . . 3  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
75 bcval2 12202 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
7674, 75syl 16 . 2  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
77 npcan 9734 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7830, 31, 77sylancl 662 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  =  N )
79 peano2zm 10803 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
80 uzid 10990 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
81 peano2uz 11023 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8229, 79, 80, 814syl 21 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
8378, 82eqeltrrd 2543 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
84 fzss2 11619 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
8583, 84syl 16 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
86 elfzelz 11574 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
87 elfzm1b 11659 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
8886, 29, 87syl2anc 661 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... N )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) ) )
8988ibi 241 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
9085, 89sseldd 3468 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
91 bcval2 12202 . . . 4  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9290, 91syl 16 . . 3  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
9392oveq1d 6218 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
9467, 76, 933eqtr4d 2505 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648    C_ wss 3439   ` cfv 5529  (class class class)co 6203   CCcc 9395   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402    - cmin 9710    / cdiv 10108   NNcn 10437   NN0cn0 10694   ZZcz 10761   ZZ>=cuz 10976   ...cfz 11558   !cfa 12172    _C cbc 12199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-seq 11928  df-fac 12173  df-bc 12200
This theorem is referenced by:  bcp1nk  12214  bcpasc  12218  basellem5  22565  bpolydiflem  28364
  Copyright terms: Public domain W3C validator