MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baspartn Structured version   Visualization version   Unicode version

Theorem baspartn 20046
Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
baspartn  |-  ( ( P  e.  V  /\  A. x  e.  P  A. y  e.  P  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )  ->  P  e.  TopBases )
Distinct variable group:    x, P, y
Allowed substitution hints:    V( x, y)

Proof of Theorem baspartn
StepHypRef Expression
1 id 22 . . . . . . . . 9  |-  ( x  e.  P  ->  x  e.  P )
2 pwidg 3955 . . . . . . . . 9  |-  ( x  e.  P  ->  x  e.  ~P x )
31, 2elind 3609 . . . . . . . 8  |-  ( x  e.  P  ->  x  e.  ( P  i^i  ~P x ) )
4 elssuni 4219 . . . . . . . 8  |-  ( x  e.  ( P  i^i  ~P x )  ->  x  C_ 
U. ( P  i^i  ~P x ) )
53, 4syl 17 . . . . . . 7  |-  ( x  e.  P  ->  x  C_ 
U. ( P  i^i  ~P x ) )
6 inidm 3632 . . . . . . . . 9  |-  ( x  i^i  x )  =  x
7 ineq2 3619 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  i^i  x )  =  ( x  i^i  y ) )
86, 7syl5eqr 2519 . . . . . . . 8  |-  ( x  =  y  ->  x  =  ( x  i^i  y ) )
98pweqd 3947 . . . . . . . . . 10  |-  ( x  =  y  ->  ~P x  =  ~P (
x  i^i  y )
)
109ineq2d 3625 . . . . . . . . 9  |-  ( x  =  y  ->  ( P  i^i  ~P x )  =  ( P  i^i  ~P ( x  i^i  y
) ) )
1110unieqd 4200 . . . . . . . 8  |-  ( x  =  y  ->  U. ( P  i^i  ~P x )  =  U. ( P  i^i  ~P ( x  i^i  y ) ) )
128, 11sseq12d 3447 . . . . . . 7  |-  ( x  =  y  ->  (
x  C_  U. ( P  i^i  ~P x )  <-> 
( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
135, 12syl5ibcom 228 . . . . . 6  |-  ( x  e.  P  ->  (
x  =  y  -> 
( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
14 0ss 3766 . . . . . . . 8  |-  (/)  C_  U. ( P  i^i  ~P ( x  i^i  y ) )
15 sseq1 3439 . . . . . . . 8  |-  ( ( x  i^i  y )  =  (/)  ->  ( ( x  i^i  y ) 
C_  U. ( P  i^i  ~P ( x  i^i  y
) )  <->  (/)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
1614, 15mpbiri 241 . . . . . . 7  |-  ( ( x  i^i  y )  =  (/)  ->  ( x  i^i  y )  C_  U. ( P  i^i  ~P ( x  i^i  y
) ) )
1716a1i 11 . . . . . 6  |-  ( x  e.  P  ->  (
( x  i^i  y
)  =  (/)  ->  (
x  i^i  y )  C_ 
U. ( P  i^i  ~P ( x  i^i  y
) ) ) )
1813, 17jaod 387 . . . . 5  |-  ( x  e.  P  ->  (
( x  =  y  \/  ( x  i^i  y )  =  (/) )  ->  ( x  i^i  y )  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
1918ralimdv 2806 . . . 4  |-  ( x  e.  P  ->  ( A. y  e.  P  ( x  =  y  \/  ( x  i^i  y
)  =  (/) )  ->  A. y  e.  P  ( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
2019ralimia 2794 . . 3  |-  ( A. x  e.  P  A. y  e.  P  (
x  =  y  \/  ( x  i^i  y
)  =  (/) )  ->  A. x  e.  P  A. y  e.  P  ( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) )
2120adantl 473 . 2  |-  ( ( P  e.  V  /\  A. x  e.  P  A. y  e.  P  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )  ->  A. x  e.  P  A. y  e.  P  ( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) )
22 isbasisg 20039 . . 3  |-  ( P  e.  V  ->  ( P  e.  TopBases  <->  A. x  e.  P  A. y  e.  P  ( x  i^i  y
)  C_  U. ( P  i^i  ~P ( x  i^i  y ) ) ) )
2322adantr 472 . 2  |-  ( ( P  e.  V  /\  A. x  e.  P  A. y  e.  P  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )  ->  ( P  e.  TopBases  <->  A. x  e.  P  A. y  e.  P  (
x  i^i  y )  C_ 
U. ( P  i^i  ~P ( x  i^i  y
) ) ) )
2421, 23mpbird 240 1  |-  ( ( P  e.  V  /\  A. x  e.  P  A. y  e.  P  (
x  =  y  \/  ( x  i^i  y
)  =  (/) ) )  ->  P  e.  TopBases )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U.cuni 4190   TopBasesctb 19997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033  df-dif 3393  df-in 3397  df-ss 3404  df-nul 3723  df-pw 3944  df-uni 4191  df-bases 19999
This theorem is referenced by:  kelac2lem  35993
  Copyright terms: Public domain W3C validator