MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basis1 Structured version   Unicode version

Theorem basis1 19320
Description: Property of a basis. (Contributed by NM, 16-Jul-2006.)
Assertion
Ref Expression
basis1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )

Proof of Theorem basis1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisg 19317 . . . 4  |-  ( B  e.  TopBases  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
21ibi 241 . . 3  |-  ( B  e.  TopBases  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3 ineq1 3698 . . . . 5  |-  ( x  =  C  ->  (
x  i^i  y )  =  ( C  i^i  y ) )
43pweqd 4021 . . . . . . 7  |-  ( x  =  C  ->  ~P ( x  i^i  y
)  =  ~P ( C  i^i  y ) )
54ineq2d 3705 . . . . . 6  |-  ( x  =  C  ->  ( B  i^i  ~P ( x  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  y
) ) )
65unieqd 4261 . . . . 5  |-  ( x  =  C  ->  U. ( B  i^i  ~P ( x  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  y ) ) )
73, 6sseq12d 3538 . . . 4  |-  ( x  =  C  ->  (
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) ) ) )
8 ineq2 3699 . . . . 5  |-  ( y  =  D  ->  ( C  i^i  y )  =  ( C  i^i  D
) )
98pweqd 4021 . . . . . . 7  |-  ( y  =  D  ->  ~P ( C  i^i  y
)  =  ~P ( C  i^i  D ) )
109ineq2d 3705 . . . . . 6  |-  ( y  =  D  ->  ( B  i^i  ~P ( C  i^i  y ) )  =  ( B  i^i  ~P ( C  i^i  D
) ) )
1110unieqd 4261 . . . . 5  |-  ( y  =  D  ->  U. ( B  i^i  ~P ( C  i^i  y ) )  =  U. ( B  i^i  ~P ( C  i^i  D ) ) )
128, 11sseq12d 3538 . . . 4  |-  ( y  =  D  ->  (
( C  i^i  y
)  C_  U. ( B  i^i  ~P ( C  i^i  y ) )  <-> 
( C  i^i  D
)  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
137, 12rspc2v 3228 . . 3  |-  ( ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
142, 13syl5com 30 . 2  |-  ( B  e.  TopBases  ->  ( ( C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) ) )
15143impib 1194 1  |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   U.cuni 4251   TopBasesctb 19267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-v 3120  df-in 3488  df-ss 3495  df-pw 4018  df-uni 4252  df-bases 19270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator