MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baseval Structured version   Unicode version

Theorem baseval 14538
Description: Value of the base set extractor. (Normally it is preferred to work with  ( Base `  ndx ) rather than the hard-coded  1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
baseval.k  |-  K  e. 
_V
Assertion
Ref Expression
baseval  |-  ( Base `  K )  =  ( K `  1 )

Proof of Theorem baseval
StepHypRef Expression
1 baseval.k . 2  |-  K  e. 
_V
2 df-base 14498 . 2  |-  Base  = Slot  1
31, 2strfvn 14510 1  |-  ( Base `  K )  =  ( K `  1 )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   _Vcvv 3113   ` cfv 5588   1c1 9494   Basecbs 14493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-slot 14497  df-base 14498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator