MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Unicode version

Theorem basellem5 23874
Description: Lemma for basel 23879. Using vieta1 23133, we can calculate the sum of the roots of  P as the quotient of the top two coefficients, and since the function  T enumerates the roots, we are left with an equation that sums the  cot ^ 2 function at the  M different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
basel.p  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
basel.t  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
Assertion
Ref Expression
basellem5  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
Distinct variable groups:    j, k,
t, n, M    j, N, k, n, t    P, k, n    T, k
Allowed substitution hints:    P( t, j)    T( t, j, n)

Proof of Theorem basellem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2429 . . 3  |-  (coeff `  P )  =  (coeff `  P )
2 eqid 2429 . . 3  |-  (deg `  P )  =  (deg
`  P )
3 eqid 2429 . . 3  |-  ( `' P " { 0 } )  =  ( `' P " { 0 } )
4 basel.n . . . . 5  |-  N  =  ( ( 2  x.  M )  +  1 )
5 basel.p . . . . 5  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
64, 5basellem2 23871 . . . 4  |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P
)  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
76simp1d 1017 . . 3  |-  ( M  e.  NN  ->  P  e.  (Poly `  CC )
)
86simp2d 1018 . . . 4  |-  ( M  e.  NN  ->  (deg `  P )  =  M )
9 nnnn0 10876 . . . . 5  |-  ( M  e.  NN  ->  M  e.  NN0 )
10 hashfz1 12526 . . . . 5  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
119, 10syl 17 . . . 4  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
12 basel.t . . . . . . 7  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
134, 5, 12basellem4 23873 . . . . . 6  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
14 ovex 6333 . . . . . . 7  |-  ( 1 ... M )  e. 
_V
1514f1oen 7597 . . . . . 6  |-  ( T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } )  ->  ( 1 ... M )  ~~  ( `' P " { 0 } ) )
1613, 15syl 17 . . . . 5  |-  ( M  e.  NN  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
17 fzfid 12183 . . . . . 6  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
18 nnne0 10642 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  =/=  0 )
198, 18eqnetrd 2724 . . . . . . . . 9  |-  ( M  e.  NN  ->  (deg `  P )  =/=  0
)
20 fveq2 5881 . . . . . . . . . . 11  |-  ( P  =  0p  -> 
(deg `  P )  =  (deg `  0p
) )
21 dgr0 23084 . . . . . . . . . . 11  |-  (deg ` 
0p )  =  0
2220, 21syl6eq 2486 . . . . . . . . . 10  |-  ( P  =  0p  -> 
(deg `  P )  =  0 )
2322necon3i 2671 . . . . . . . . 9  |-  ( (deg
`  P )  =/=  0  ->  P  =/=  0p )
2419, 23syl 17 . . . . . . . 8  |-  ( M  e.  NN  ->  P  =/=  0p )
253fta1 23129 . . . . . . . 8  |-  ( ( P  e.  (Poly `  CC )  /\  P  =/=  0p )  -> 
( ( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
267, 24, 25syl2anc 665 . . . . . . 7  |-  ( M  e.  NN  ->  (
( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
2726simpld 460 . . . . . 6  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  e.  Fin )
28 hashen 12527 . . . . . 6  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( `' P " { 0 } )  e.  Fin )  ->  ( ( # `  ( 1 ... M
) )  =  (
# `  ( `' P " { 0 } ) )  <->  ( 1 ... M )  ~~  ( `' P " { 0 } ) ) )
2917, 27, 28syl2anc 665 . . . . 5  |-  ( M  e.  NN  ->  (
( # `  ( 1 ... M ) )  =  ( # `  ( `' P " { 0 } ) )  <->  ( 1 ... M )  ~~  ( `' P " { 0 } ) ) )
3016, 29mpbird 235 . . . 4  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  ( # `  ( `' P " { 0 } ) ) )
318, 11, 303eqtr2rd 2477 . . 3  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  =  (deg `  P ) )
32 id 23 . . . 4  |-  ( M  e.  NN  ->  M  e.  NN )
338, 32eqeltrd 2517 . . 3  |-  ( M  e.  NN  ->  (deg `  P )  e.  NN )
341, 2, 3, 7, 31, 33vieta1 23133 . 2  |-  ( M  e.  NN  ->  sum_ x  e.  ( `' P " { 0 } ) x  =  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) ) )
35 id 23 . . 3  |-  ( x  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  ->  x  =  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )
36 oveq1 6312 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  pi )  =  ( k  x.  pi ) )
3736oveq1d 6320 . . . . . . 7  |-  ( n  =  k  ->  (
( n  x.  pi )  /  N )  =  ( ( k  x.  pi )  /  N
) )
3837fveq2d 5885 . . . . . 6  |-  ( n  =  k  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( k  x.  pi )  /  N ) ) )
3938oveq1d 6320 . . . . 5  |-  ( n  =  k  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
40 ovex 6333 . . . . 5  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
4139, 12, 40fvmpt 5964 . . . 4  |-  ( k  e.  ( 1 ... M )  ->  ( T `  k )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
4241adantl 467 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( T `  k )  =  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )
43 cnvimass 5208 . . . . 5  |-  ( `' P " { 0 } )  C_  dom  P
44 plyf 23020 . . . . . 6  |-  ( P  e.  (Poly `  CC )  ->  P : CC --> CC )
45 fdm 5750 . . . . . 6  |-  ( P : CC --> CC  ->  dom 
P  =  CC )
467, 44, 453syl 18 . . . . 5  |-  ( M  e.  NN  ->  dom  P  =  CC )
4743, 46syl5sseq 3518 . . . 4  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  C_  CC )
4847sselda 3470 . . 3  |-  ( ( M  e.  NN  /\  x  e.  ( `' P " { 0 } ) )  ->  x  e.  CC )
4935, 17, 13, 42, 48fsumf1o 13767 . 2  |-  ( M  e.  NN  ->  sum_ x  e.  ( `' P " { 0 } ) x  =  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
506simp3d 1019 . . . . . . 7  |-  ( M  e.  NN  ->  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) )
518oveq1d 6320 . . . . . . 7  |-  ( M  e.  NN  ->  (
(deg `  P )  -  1 )  =  ( M  -  1 ) )
5250, 51fveq12d 5887 . . . . . 6  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) ) )
53 nnm1nn0 10911 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
54 oveq2 6313 . . . . . . . . . 10  |-  ( n  =  ( M  - 
1 )  ->  (
2  x.  n )  =  ( 2  x.  ( M  -  1 ) ) )
5554oveq2d 6321 . . . . . . . . 9  |-  ( n  =  ( M  - 
1 )  ->  ( N  _C  ( 2  x.  n ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
56 oveq2 6313 . . . . . . . . . 10  |-  ( n  =  ( M  - 
1 )  ->  ( M  -  n )  =  ( M  -  ( M  -  1
) ) )
5756oveq2d 6321 . . . . . . . . 9  |-  ( n  =  ( M  - 
1 )  ->  ( -u 1 ^ ( M  -  n ) )  =  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) )
5855, 57oveq12d 6323 . . . . . . . 8  |-  ( n  =  ( M  - 
1 )  ->  (
( N  _C  (
2  x.  n ) )  x.  ( -u
1 ^ ( M  -  n ) ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) ) )
59 eqid 2429 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) )
60 ovex 6333 . . . . . . . 8  |-  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) )  e.  _V
6158, 59, 60fvmpt 5964 . . . . . . 7  |-  ( ( M  -  1 )  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1 ) ) ) ) )
6253, 61syl 17 . . . . . 6  |-  ( M  e.  NN  ->  (
( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) ) )
63 nncn 10617 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  CC )
64 ax-1cn 9596 . . . . . . . . . . 11  |-  1  e.  CC
65 nncan 9902 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  -  ( M  -  1 ) )  =  1 )
6663, 64, 65sylancl 666 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( M  -  ( M  -  1 ) )  =  1 )
6766oveq2d 6321 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  ( M  - 
1 ) ) )  =  ( -u 1 ^ 1 ) )
68 neg1cn 10713 . . . . . . . . . 10  |-  -u 1  e.  CC
69 exp1 12275 . . . . . . . . . 10  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 1 )  =  -u 1
)
7068, 69ax-mp 5 . . . . . . . . 9  |-  ( -u
1 ^ 1 )  =  -u 1
7167, 70syl6eq 2486 . . . . . . . 8  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  ( M  - 
1 ) ) )  =  -u 1 )
7271oveq2d 6321 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( -u
1 ^ ( M  -  ( M  - 
1 ) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  -u 1 ) )
73 2nn 10767 . . . . . . . . . . . . . 14  |-  2  e.  NN
74 nnmulcl 10632 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
7573, 74mpan 674 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
7675peano2nnd 10626 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
774, 76syl5eqel 2521 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  N  e.  NN )
7877nnnn0d 10925 . . . . . . . . . 10  |-  ( M  e.  NN  ->  N  e.  NN0 )
79 2z 10969 . . . . . . . . . . 11  |-  2  e.  ZZ
80 nnz 10959 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  ZZ )
81 peano2zm 10980 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
8280, 81syl 17 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  ZZ )
83 zmulcl 10985 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( 2  x.  ( M  -  1 ) )  e.  ZZ )
8479, 82, 83sylancr 667 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ZZ )
85 bccl 12504 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 2  x.  ( M  -  1 ) )  e.  ZZ )  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN0 )
8678, 84, 85syl2anc 665 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e. 
NN0 )
8786nn0cnd 10927 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  CC )
88 mulcom 9624 . . . . . . . 8  |-  ( ( ( N  _C  (
2  x.  ( M  -  1 ) ) )  e.  CC  /\  -u 1  e.  CC )  ->  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  -u 1 )  =  ( -u 1  x.  ( N  _C  (
2  x.  ( M  -  1 ) ) ) ) )
8987, 68, 88sylancl 666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  -u 1
)  =  ( -u
1  x.  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )
9087mulm1d 10069 . . . . . . 7  |-  ( M  e.  NN  ->  ( -u 1  x.  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9172, 89, 903eqtrd 2474 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( -u
1 ^ ( M  -  ( M  - 
1 ) ) ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9252, 62, 913eqtrd 2474 . . . . 5  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9387negcld 9972 . . . . 5  |-  ( M  e.  NN  ->  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  CC )
9492, 93eqeltrd 2517 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  e.  CC )
9550, 8fveq12d 5887 . . . . . 6  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M ) )
96 oveq2 6313 . . . . . . . . . 10  |-  ( n  =  M  ->  (
2  x.  n )  =  ( 2  x.  M ) )
9796oveq2d 6321 . . . . . . . . 9  |-  ( n  =  M  ->  ( N  _C  ( 2  x.  n ) )  =  ( N  _C  (
2  x.  M ) ) )
98 oveq2 6313 . . . . . . . . . 10  |-  ( n  =  M  ->  ( M  -  n )  =  ( M  -  M ) )
9998oveq2d 6321 . . . . . . . . 9  |-  ( n  =  M  ->  ( -u 1 ^ ( M  -  n ) )  =  ( -u 1 ^ ( M  -  M ) ) )
10097, 99oveq12d 6323 . . . . . . . 8  |-  ( n  =  M  ->  (
( N  _C  (
2  x.  n ) )  x.  ( -u
1 ^ ( M  -  n ) ) )  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) ) )
101 ovex 6333 . . . . . . . 8  |-  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) )  e.  _V
102100, 59, 101fvmpt 5964 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M )  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M
) ) ) )
1039, 102syl 17 . . . . . 6  |-  ( M  e.  NN  ->  (
( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M
)  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) ) )
10463subidd 9973 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( M  -  M )  =  0 )
105104oveq2d 6321 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  M ) )  =  ( -u 1 ^ 0 ) )
106 exp0 12273 . . . . . . . . . 10  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
10768, 106ax-mp 5 . . . . . . . . 9  |-  ( -u
1 ^ 0 )  =  1
108105, 107syl6eq 2486 . . . . . . . 8  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  M ) )  =  1 )
109108oveq2d 6321 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  ( -u
1 ^ ( M  -  M ) ) )  =  ( ( N  _C  ( 2  x.  M ) )  x.  1 ) )
110 1eluzge0 11202 . . . . . . . . . . . 12  |-  1  e.  ( ZZ>= `  0 )
111 fzss1 11835 . . . . . . . . . . . 12  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
112110, 111ax-mp 5 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 0 ... N
)
11375nnred 10624 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  RR )
114113lep1d 10538 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  <_  ( ( 2  x.  M )  +  1 ) )
115114, 4syl6breqr 4466 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  M )  <_  N )
116 nnuz 11194 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
11775, 116syl6eleq 2527 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( ZZ>= `  1
) )
11877nnzd 11039 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  N  e.  ZZ )
119 elfz5 11790 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  M
)  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( 2  x.  M
)  e.  ( 1 ... N )  <->  ( 2  x.  M )  <_  N ) )
120117, 118, 119syl2anc 665 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  e.  ( 1 ... N )  <->  ( 2  x.  M )  <_  N ) )
121115, 120mpbird 235 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( 1 ... N ) )
122112, 121sseldi 3468 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( 0 ... N ) )
123 bccl2 12505 . . . . . . . . . 10  |-  ( ( 2  x.  M )  e.  ( 0 ... N )  ->  ( N  _C  ( 2  x.  M ) )  e.  NN )
124122, 123syl 17 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  e.  NN )
125124nncnd 10625 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  e.  CC )
126125mulid1d 9659 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  1 )  =  ( N  _C  ( 2  x.  M
) ) )
127109, 126eqtrd 2470 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  ( -u
1 ^ ( M  -  M ) ) )  =  ( N  _C  ( 2  x.  M ) ) )
12895, 103, 1273eqtrd 2474 . . . . 5  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =  ( N  _C  ( 2  x.  M ) ) )
129128, 125eqeltrd 2517 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  e.  CC )
130124nnne0d 10654 . . . . 5  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =/=  0 )
131128, 130eqnetrd 2724 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =/=  0 )
13294, 129, 131divnegd 10395 . . 3  |-  ( M  e.  NN  ->  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  (
-u ( (coeff `  P ) `  (
(deg `  P )  -  1 ) )  /  ( (coeff `  P ) `  (deg `  P ) ) ) )
13392negeqd 9868 . . . . 5  |-  ( M  e.  NN  ->  -u (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  -u -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
13487negnegd 9976 . . . . 5  |-  ( M  e.  NN  ->  -u -u ( N  _C  ( 2  x.  ( M  -  1 ) ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
135133, 134eqtrd 2470 . . . 4  |-  ( M  e.  NN  ->  -u (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
136135, 128oveq12d 6323 . . 3  |-  ( M  e.  NN  ->  ( -u ( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  ( ( N  _C  (
2  x.  ( M  -  1 ) ) )  /  ( N  _C  ( 2  x.  M ) ) ) )
137 bcm1k 12497 . . . . . . . . . 10  |-  ( ( 2  x.  M )  e.  ( 1 ... N )  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( ( 2  x.  M )  -  1 ) )  x.  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) ) ) )
138121, 137syl 17 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( ( 2  x.  M )  -  1 ) )  x.  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) ) ) )
13975nncnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  CC )
140 1cnd 9658 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  1  e.  CC )
141139, 140, 140pnncand 10024 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  +  1 )  -  ( ( 2  x.  M )  -  1 ) )  =  ( 1  +  1 ) )
1424oveq1i 6315 . . . . . . . . . . . . . . . 16  |-  ( N  -  ( ( 2  x.  M )  - 
1 ) )  =  ( ( ( 2  x.  M )  +  1 )  -  (
( 2  x.  M
)  -  1 ) )
143 df-2 10668 . . . . . . . . . . . . . . . 16  |-  2  =  ( 1  +  1 )
144141, 142, 1433eqtr4g 2495 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( N  -  ( (
2  x.  M )  -  1 ) )  =  2 )
145 2nn0 10886 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
146144, 145syl6eqel 2525 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  ( N  -  ( (
2  x.  M )  -  1 ) )  e.  NN0 )
147 nnm1nn0 10911 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  M )  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN0 )
14875, 147syl 17 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN0 )
149 nn0sub 10920 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2  x.  M )  -  1 )  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( 2  x.  M )  - 
1 )  <_  N  <->  ( N  -  ( ( 2  x.  M )  -  1 ) )  e.  NN0 ) )
150148, 78, 149syl2anc 665 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  <_  N  <->  ( N  -  ( ( 2  x.  M )  - 
1 ) )  e. 
NN0 ) )
151146, 150mpbird 235 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  <_  N )
152632timesd 10855 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN  ->  (
2  x.  M )  =  ( M  +  M ) )
153152oveq1d 6320 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =  ( ( M  +  M )  - 
1 ) )
15463, 63, 140addsubd 10006 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
( M  +  M
)  -  1 )  =  ( ( M  -  1 )  +  M ) )
155153, 154eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =  ( ( M  -  1 )  +  M ) )
156 nn0nnaddcl 10901 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  -  1 )  e.  NN0  /\  M  e.  NN )  ->  ( ( M  - 
1 )  +  M
)  e.  NN )
15753, 156mpancom 673 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( M  -  1 )  +  M )  e.  NN )
158155, 157eqeltrd 2517 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN )
159158, 116syl6eleq 2527 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  ( ZZ>= `  1
) )
160 elfz5 11790 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  M )  -  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( ( 2  x.  M )  -  1 )  e.  ( 1 ... N )  <->  ( (
2  x.  M )  -  1 )  <_  N ) )
161159, 118, 160syl2anc 665 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  e.  ( 1 ... N )  <->  ( (
2  x.  M )  -  1 )  <_  N ) )
162151, 161mpbird 235 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  ( 1 ... N ) )
163 bcm1k 12497 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  M
)  -  1 )  e.  ( 1 ... N )  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( ( ( 2  x.  M )  - 
1 )  -  1 ) )  x.  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) ) ) )
164162, 163syl 17 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( ( ( 2  x.  M )  - 
1 )  -  1 ) )  x.  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) ) ) )
165642timesi 10730 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  ( 1  +  1 )
166165eqcomi 2442 . . . . . . . . . . . . . . 15  |-  ( 1  +  1 )  =  ( 2  x.  1 )
167166oveq2i 6316 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  M )  -  ( 1  +  1 ) )  =  ( ( 2  x.  M )  -  (
2  x.  1 ) )
168139, 140, 140subsub4d 10016 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  =  ( ( 2  x.  M )  -  ( 1  +  1 ) ) )
169 2cnd 10682 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  2  e.  CC )
170169, 63, 140subdid 10073 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  =  ( ( 2  x.  M )  -  ( 2  x.  1 ) ) )
171167, 168, 1703eqtr4a 2496 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  =  ( 2  x.  ( M  -  1 ) ) )
172171oveq2d 6321 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( N  _C  ( ( ( 2  x.  M )  -  1 )  - 
1 ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
17377nncnd 10625 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  N  e.  CC )
174158nncnd 10625 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  CC )
175173, 174, 140subsubd 10013 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  ( N  -  ( (
( 2  x.  M
)  -  1 )  -  1 ) )  =  ( ( N  -  ( ( 2  x.  M )  - 
1 ) )  +  1 ) )
176144oveq1d 6320 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  +  1 )  =  ( 2  +  1 ) )
177 df-3 10669 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
178176, 177syl6eqr 2488 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  +  1 )  =  3 )
179175, 178eqtrd 2470 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( N  -  ( (
( 2  x.  M
)  -  1 )  -  1 ) )  =  3 )
180179oveq1d 6320 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) )  =  ( 3  / 
( ( 2  x.  M )  -  1 ) ) )
181172, 180oveq12d 6323 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( N  _C  (
( ( 2  x.  M )  -  1 )  -  1 ) )  x.  ( ( N  -  ( ( ( 2  x.  M
)  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  - 
1 ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( 3  /  (
( 2  x.  M
)  -  1 ) ) ) )
182164, 181eqtrd 2470 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
3  /  ( ( 2  x.  M )  -  1 ) ) ) )
183144oveq1d 6320 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) )  =  ( 2  / 
( 2  x.  M
) ) )
184182, 183oveq12d 6323 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N  _C  (
( 2  x.  M
)  -  1 ) )  x.  ( ( N  -  ( ( 2  x.  M )  -  1 ) )  /  ( 2  x.  M ) ) )  =  ( ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( 3  / 
( ( 2  x.  M )  -  1 ) ) )  x.  ( 2  /  (
2  x.  M ) ) ) )
185 3re 10683 . . . . . . . . . . . 12  |-  3  e.  RR
186 nndivre 10645 . . . . . . . . . . . 12  |-  ( ( 3  e.  RR  /\  ( ( 2  x.  M )  -  1 )  e.  NN )  ->  ( 3  / 
( ( 2  x.  M )  -  1 ) )  e.  RR )
187185, 158, 186sylancr 667 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
3  /  ( ( 2  x.  M )  -  1 ) )  e.  RR )
188187recnd 9668 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
3  /  ( ( 2  x.  M )  -  1 ) )  e.  CC )
189 2re 10679 . . . . . . . . . . . 12  |-  2  e.  RR
190 nndivre 10645 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 2  x.  M
)  e.  NN )  ->  ( 2  / 
( 2  x.  M
) )  e.  RR )
191189, 75, 190sylancr 667 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  /  ( 2  x.  M ) )  e.  RR )
192191recnd 9668 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  /  ( 2  x.  M ) )  e.  CC )
19387, 188, 192mulassd 9665 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
3  /  ( ( 2  x.  M )  -  1 ) ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( ( 3  / 
( ( 2  x.  M )  -  1 ) )  x.  (
2  /  ( 2  x.  M ) ) ) ) )
194138, 184, 1933eqtrd 2474 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) ) ) )
195 3cn 10684 . . . . . . . . . . . 12  |-  3  e.  CC
196195a1i 11 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  3  e.  CC )
197158nnne0d 10654 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =/=  0 )
19875nnne0d 10654 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  M )  =/=  0 )
199196, 174, 169, 139, 197, 198divmuldivd 10423 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( ( 3  x.  2 )  / 
( ( ( 2  x.  M )  - 
1 )  x.  (
2  x.  M ) ) ) )
200 3t2e6 10761 . . . . . . . . . . . 12  |-  ( 3  x.  2 )  =  6
201200a1i 11 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
3  x.  2 )  =  6 )
202174, 139mulcomd 9663 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  x.  ( 2  x.  M ) )  =  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) )
203201, 202oveq12d 6323 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 3  x.  2 )  /  ( ( ( 2  x.  M
)  -  1 )  x.  ( 2  x.  M ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
204199, 203eqtrd 2470 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
205204oveq2d 6321 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( ( 3  /  ( ( 2  x.  M )  -  1 ) )  x.  ( 2  / 
( 2  x.  M
) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) ) )
206194, 205eqtrd 2470 . . . . . . 7  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) ) )
207206oveq1d 6320 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )  / 
( N  _C  (
2  x.  ( M  -  1 ) ) ) ) )
208 6re 10690 . . . . . . . . 9  |-  6  e.  RR
20975, 158nnmulcld 10657 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  e.  NN )
210 nndivre 10645 . . . . . . . . 9  |-  ( ( 6  e.  RR  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  NN )  ->  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) )  e.  RR )
211208, 209, 210sylancr 667 . . . . . . . 8  |-  ( M  e.  NN  ->  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) )  e.  RR )
212211recnd 9668 . . . . . . 7  |-  ( M  e.  NN  ->  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) )  e.  CC )
213 nnm1nn0 10911 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  M
)  -  1 )  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  e.  NN0 )
214158, 213syl 17 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  e.  NN0 )
215171, 214eqeltrrd 2518 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  NN0 )
216215nn0red 10926 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  RR )
217158nnred 10624 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  RR )
21877nnred 10624 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  N  e.  RR )
219217ltm1d 10539 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  <  ( ( 2  x.  M )  - 
1 ) )
220171, 219eqbrtrrd 4448 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <  ( ( 2  x.  M )  - 
1 ) )
221216, 217, 220ltled 9782 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <_  ( ( 2  x.  M )  - 
1 ) )
222216, 217, 218, 221, 151letrd 9791 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <_  N )
223 nn0uz 11193 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
224215, 223syl6eleq 2527 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ( ZZ>= `  0
) )
225 elfz5 11790 . . . . . . . . . . 11  |-  ( ( ( 2  x.  ( M  -  1 ) )  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  <->  ( 2  x.  ( M  - 
1 ) )  <_  N ) )
226224, 118, 225syl2anc 665 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  <->  ( 2  x.  ( M  - 
1 ) )  <_  N ) )
227222, 226mpbird 235 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ( 0 ... N ) )
228 bccl2 12505 . . . . . . . . 9  |-  ( ( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN )
229227, 228syl 17 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN )
230229nnne0d 10654 . . . . . . 7  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  =/=  0 )
231212, 87, 230divcan3d 10387 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
232207, 231eqtrd 2470 . . . . 5  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
233232oveq2d 6321 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( ( N  _C  ( 2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )  =  ( 1  / 
( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) ) )
234125, 87, 130, 230recdivd 10399 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( ( N  _C  ( 2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  / 
( N  _C  (
2  x.  M ) ) ) )
235209nncnd 10625 . . . . 5  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  e.  CC )
236209nnne0d 10654 . . . . 5  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  =/=  0 )
237 6cn 10691 . . . . . 6  |-  6  e.  CC
238 6nn 10771 . . . . . . 7  |-  6  e.  NN
239238nnne0i 10644 . . . . . 6  |-  6  =/=  0
240 recdiv 10312 . . . . . 6  |-  ( ( ( 6  e.  CC  /\  6  =/=  0 )  /\  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  e.  CC  /\  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  =/=  0 ) )  -> 
( 1  /  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) )  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
241237, 239, 240mpanl12 686 . . . . 5  |-  ( ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  CC  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  =/=  0 )  ->  ( 1  / 
( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) )  =  ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  6 ) )
242235, 236, 241syl2anc 665 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( 6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )
243233, 234, 2423eqtr3d 2478 . . 3  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  /  ( N  _C  ( 2  x.  M ) ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )
244132, 136, 2433eqtrd 2474 . 2  |-  ( M  e.  NN  ->  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  6 ) )
24534, 49, 2443eqtr3d 2478 1  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625    C_ wss 3442   {csn 4002   class class class wbr 4426    |-> cmpt 4484   `'ccnv 4853   dom cdm 4854   "cima 4857   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305    ~~ cen 7574   Fincfn 7577   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859   -ucneg 9860    / cdiv 10268   NNcn 10609   2c2 10659   3c3 10660   6c6 10663   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782   ^cexp 12269    _C cbc 12484   #chash 12512   sum_csu 13730   tanctan 14096   picpi 14097   0pc0p 22504  Polycply 23006  coeffccoe 23008  degcdgr 23009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-tan 14103  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-0p 22505  df-limc 22698  df-dv 22699  df-ply 23010  df-idp 23011  df-coe 23012  df-dgr 23013  df-quot 23112
This theorem is referenced by:  basellem8  23877
  Copyright terms: Public domain W3C validator