MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Visualization version   Unicode version

Theorem basellem4 24003
Description: Lemma for basel 24009. By basellem3 24002, the expression  P ( ( cot x ) ^
2 )  =  sin ( N x )  / 
( sin x ) ^ N goes to zero whenever  x  =  n pi  /  N for some  n  e.  ( 1 ... M
), so this function enumerates  M distinct roots of a degree-  M polynomial, which must therefore be all the roots by fta1 23254. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
basel.p  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
basel.t  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
Assertion
Ref Expression
basellem4  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Distinct variable groups:    t, j, n, M    j, N, n, t    P, n
Allowed substitution hints:    P( t, j)    T( t, j, n)

Proof of Theorem basellem4
Dummy variables  k  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9  |-  N  =  ( ( 2  x.  M )  +  1 )
21basellem1 24000 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
3 tanrpcl 23452 . . . . . . . 8  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( n  x.  pi )  /  N
) )  e.  RR+ )
42, 3syl 17 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+ )
5 2z 10966 . . . . . . . 8  |-  2  e.  ZZ
6 znegcl 10969 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
75, 6ax-mp 5 . . . . . . 7  |-  -u 2  e.  ZZ
8 rpexpcl 12288 . . . . . . 7  |-  ( ( ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+  /\  -u 2  e.  ZZ )  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  RR+ )
94, 7, 8sylancl 667 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR+ )
109rpcnd 11340 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC )
11 basel.p . . . . . . . 8  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
121, 11basellem3 24002 . . . . . . 7  |-  ( ( M  e.  NN  /\  ( ( n  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
132, 12syldan 473 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
14 elfzelz 11797 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... M )  ->  n  e.  ZZ )
1514adantl 468 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  ZZ )
1615zred 11037 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  RR )
17 pire 23406 . . . . . . . . . . . 12  |-  pi  e.  RR
18 remulcl 9621 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  pi  e.  RR )  -> 
( n  x.  pi )  e.  RR )
1916, 17, 18sylancl 667 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  RR )
2019recnd 9666 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  CC )
21 2nn 10764 . . . . . . . . . . . . . . 15  |-  2  e.  NN
22 nnmulcl 10629 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
2321, 22mpan 675 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
2423peano2nnd 10623 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
251, 24syl5eqel 2532 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  N  e.  NN )
2625adantr 467 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN )
2726nncnd 10622 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  CC )
2826nnne0d 10651 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  =/=  0
)
2920, 27, 28divcan2d 10382 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( N  x.  ( ( n  x.  pi )  /  N
) )  =  ( n  x.  pi ) )
3029fveq2d 5867 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  ( sin `  ( n  x.  pi ) ) )
31 sinkpi 23467 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( sin `  ( n  x.  pi ) )  =  0 )
3215, 31syl 17 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
n  x.  pi ) )  =  0 )
3330, 32eqtrd 2484 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  0 )
3433oveq1d 6303 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( N  x.  (
( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N ) ) ^ N ) )  =  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) ) )
3519, 26nndivred 10655 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  RR )
3635resincld 14190 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  RR )
3736recnd 9666 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  CC )
3826nnnn0d 10922 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN0 )
3937, 38expcld 12413 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  e.  CC )
40 sincosq1sgn 23446 . . . . . . . . . . 11  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( 0  <  ( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
412, 40syl 17 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  < 
( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
4241simpld 461 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  0  <  ( sin `  ( ( n  x.  pi )  /  N ) ) )
4342gt0ne0d 10175 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  =/=  0 )
4426nnzd 11036 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  ZZ )
4537, 43, 44expne0d 12419 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  =/=  0 )
4639, 45div0d 10379 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) )  =  0 )
4713, 34, 463eqtrd 2488 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 )
481, 11basellem2 24001 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P
)  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
4948simp1d 1019 . . . . . . . 8  |-  ( M  e.  NN  ->  P  e.  (Poly `  CC )
)
50 plyf 23145 . . . . . . . 8  |-  ( P  e.  (Poly `  CC )  ->  P : CC --> CC )
51 ffn 5726 . . . . . . . 8  |-  ( P : CC --> CC  ->  P  Fn  CC )
5249, 50, 513syl 18 . . . . . . 7  |-  ( M  e.  NN  ->  P  Fn  CC )
5352adantr 467 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  P  Fn  CC )
54 fniniseg 6001 . . . . . 6  |-  ( P  Fn  CC  ->  (
( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5553, 54syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5610, 47, 55mpbir2and 932 . . . 4  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  ( `' P " { 0 } ) )
57 basel.t . . . 4  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
5856, 57fmptd 6044 . . 3  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> ( `' P " { 0 } ) )
59 fveq2 5863 . . . . . 6  |-  ( k  =  m  ->  ( T `  k )  =  ( T `  m ) )
60 fveq2 5863 . . . . . 6  |-  ( k  =  x  ->  ( T `  k )  =  ( T `  x ) )
61 fveq2 5863 . . . . . 6  |-  ( k  =  y  ->  ( T `  k )  =  ( T `  y ) )
6214zred 11037 . . . . . . 7  |-  ( n  e.  ( 1 ... M )  ->  n  e.  RR )
6362ssriv 3435 . . . . . 6  |-  ( 1 ... M )  C_  RR
649rpred 11338 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR )
6564, 57fmptd 6044 . . . . . . 7  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> RR )
6665ffvelrnda 6020 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( T `  k )  e.  RR )
67 simplr 761 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  <  m )
6863sseli 3427 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... M )  ->  k  e.  RR )
6968ad2antrl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  e.  RR )
7063sseli 3427 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... M )  ->  m  e.  RR )
7170ad2antll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  m  e.  RR )
7217a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  pi  e.  RR )
73 pipos 23408 . . . . . . . . . . . . . . . 16  |-  0  <  pi
7473a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  pi )
75 ltmul1 10452 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  m  e.  RR  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( k  < 
m  <->  ( k  x.  pi )  <  (
m  x.  pi ) ) )
7669, 71, 72, 74, 75syl112anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  <  m  <->  ( k  x.  pi )  <  ( m  x.  pi ) ) )
7767, 76mpbid 214 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  <  ( m  x.  pi ) )
78 remulcl 9621 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  pi  e.  RR )  -> 
( k  x.  pi )  e.  RR )
7969, 17, 78sylancl 667 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  e.  RR )
80 remulcl 9621 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  pi  e.  RR )  -> 
( m  x.  pi )  e.  RR )
8171, 17, 80sylancl 667 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( m  x.  pi )  e.  RR )
8225ad2antrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  NN )
8382nnred 10621 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  RR )
8482nngt0d 10650 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  N )
85 ltdiv1 10466 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  pi )  e.  RR  /\  (
m  x.  pi )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8679, 81, 83, 84, 85syl112anc 1271 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8777, 86mpbid 214 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) )
88 neghalfpirx 23414 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  e.  RR*
89 pirp 23409 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR+
90 rphalfcl 11324 . . . . . . . . . . . . . . . . 17  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
91 rpge0 11311 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR+  ->  0  <_ 
( pi  /  2
) )
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16  |-  0  <_  ( pi  /  2
)
93 halfpire 23412 . . . . . . . . . . . . . . . . 17  |-  ( pi 
/  2 )  e.  RR
94 le0neg2 10120 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <_  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <_ 
0 ) )
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <_ 
0 )
9692, 95mpbi 212 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  <_  0
97 iooss1 11668 . . . . . . . . . . . . . . 15  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <_  0 )  ->  ( 0 (,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
9888, 96, 97mp2an 677 . . . . . . . . . . . . . 14  |-  ( 0 (,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
991basellem1 24000 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
10099ad2ant2r 752 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10198, 100sseldi 3429 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
1021basellem1 24000 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  m  e.  ( 1 ... M ) )  ->  ( ( m  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
103102ad2ant2rl 754 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10498, 103sseldi 3429 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
105 tanord 23480 . . . . . . . . . . . . 13  |-  ( ( ( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  ( ( m  x.  pi )  /  N )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )  ->  (
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
106101, 104, 105syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( k  x.  pi )  /  N )  <  (
( m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
10787, 106mpbid 214 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) ) )
108 tanrpcl 23452 . . . . . . . . . . . . 13  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( k  x.  pi )  /  N
) )  e.  RR+ )
109100, 108syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+ )
110 tanrpcl 23452 . . . . . . . . . . . . 13  |-  ( ( ( m  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( m  x.  pi )  /  N
) )  e.  RR+ )
111103, 110syl 17 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+ )
112 rprege0 11313 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) ) )
113 rprege0 11313 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )
114 lt2sq 12345 . . . . . . . . . . . . 13  |-  ( ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) )  /\  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )  ->  (
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
115112, 113, 114syl2an 480 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+ )  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
116109, 111, 115syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
117107, 116mpbid 214 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )
118 rpexpcl 12288 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
119109, 5, 118sylancl 667 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
120 rpexpcl 12288 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
121111, 5, 120sylancl 667 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
122119, 121ltrecd 11356 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  <  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ 2 )  <->  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) )  <  (
1  /  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
123117, 122mpbid 214 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( 1  /  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )  <  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
124 oveq1 6295 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
n  x.  pi )  =  ( m  x.  pi ) )
125124oveq1d 6303 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( n  x.  pi )  /  N )  =  ( ( m  x.  pi )  /  N
) )
126125fveq2d 5867 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( m  x.  pi )  /  N ) ) )
127126oveq1d 6303 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
128 ovex 6316 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
129127, 57, 128fvmpt 5946 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... M )  ->  ( T `  m )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
130129ad2antll 734 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 ) )
131111rpcnd 11340 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  CC )
132 2nn0 10883 . . . . . . . . . . 11  |-  2  e.  NN0
133 expneg 12277 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
134131, 132, 133sylancl 667 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
135130, 134eqtrd 2484 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) ) )
136 oveq1 6295 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
n  x.  pi )  =  ( k  x.  pi ) )
137136oveq1d 6303 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( n  x.  pi )  /  N )  =  ( ( k  x.  pi )  /  N
) )
138137fveq2d 5867 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( k  x.  pi )  /  N ) ) )
139138oveq1d 6303 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
140 ovex 6316 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
141139, 57, 140fvmpt 5946 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... M )  ->  ( T `  k )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
142141ad2antrl 733 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) )
143109rpcnd 11340 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  CC )
144 expneg 12277 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
145143, 132, 144sylancl 667 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
146142, 145eqtrd 2484 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( 1  /  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
147123, 135, 1463brtr4d 4432 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  <  ( T `  k ) )
148147an32s 812 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  /\  k  <  m )  ->  ( T `  m )  <  ( T `  k
) )
149148ex 436 . . . . . 6  |-  ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  ->  (
k  <  m  ->  ( T `  m )  <  ( T `  k ) ) )
15059, 60, 61, 63, 66, 149eqord2 10142 . . . . 5  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( x  =  y  <->  ( T `  x )  =  ( T `  y ) ) )
151150biimprd 227 . . . 4  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
152151ralrimivva 2808 . . 3  |-  ( M  e.  NN  ->  A. x  e.  ( 1 ... M
) A. y  e.  ( 1 ... M
) ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) )
153 dff13 6157 . . 3  |-  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  ( T : ( 1 ... M ) --> ( `' P " { 0 } )  /\  A. x  e.  ( 1 ... M ) A. y  e.  ( 1 ... M ) ( ( T `  x
)  =  ( T `
 y )  ->  x  =  y )
) )
15458, 152, 153sylanbrc 669 . 2  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) )
15548simp2d 1020 . . . . . . . . 9  |-  ( M  e.  NN  ->  (deg `  P )  =  M )
156 nnne0 10639 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
157155, 156eqnetrd 2690 . . . . . . . 8  |-  ( M  e.  NN  ->  (deg `  P )  =/=  0
)
158 fveq2 5863 . . . . . . . . . 10  |-  ( P  =  0p  -> 
(deg `  P )  =  (deg `  0p
) )
159 dgr0 23209 . . . . . . . . . 10  |-  (deg ` 
0p )  =  0
160158, 159syl6eq 2500 . . . . . . . . 9  |-  ( P  =  0p  -> 
(deg `  P )  =  0 )
161160necon3i 2655 . . . . . . . 8  |-  ( (deg
`  P )  =/=  0  ->  P  =/=  0p )
162157, 161syl 17 . . . . . . 7  |-  ( M  e.  NN  ->  P  =/=  0p )
163 eqid 2450 . . . . . . . 8  |-  ( `' P " { 0 } )  =  ( `' P " { 0 } )
164163fta1 23254 . . . . . . 7  |-  ( ( P  e.  (Poly `  CC )  /\  P  =/=  0p )  -> 
( ( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
16549, 162, 164syl2anc 666 . . . . . 6  |-  ( M  e.  NN  ->  (
( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
166165simpld 461 . . . . 5  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  e.  Fin )
167 f1domg 7586 . . . . 5  |-  ( ( `' P " { 0 } )  e.  Fin  ->  ( T : ( 1 ... M )
-1-1-> ( `' P " { 0 } )  ->  ( 1 ... M )  ~<_  ( `' P " { 0 } ) ) )
168166, 154, 167sylc 62 . . . 4  |-  ( M  e.  NN  ->  (
1 ... M )  ~<_  ( `' P " { 0 } ) )
169165simprd 465 . . . . . 6  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) )
170 nnnn0 10873 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
171 hashfz1 12526 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
172170, 171syl 17 . . . . . . 7  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
173155, 172eqtr4d 2487 . . . . . 6  |-  ( M  e.  NN  ->  (deg `  P )  =  (
# `  ( 1 ... M ) ) )
174169, 173breqtrd 4426 . . . . 5  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  ( # `  (
1 ... M ) ) )
175 fzfid 12183 . . . . . 6  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
176 hashdom 12555 . . . . . 6  |-  ( ( ( `' P " { 0 } )  e.  Fin  /\  (
1 ... M )  e. 
Fin )  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
177166, 175, 176syl2anc 666 . . . . 5  |-  ( M  e.  NN  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
178174, 177mpbid 214 . . . 4  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  ~<_  ( 1 ... M ) )
179 sbth 7689 . . . 4  |-  ( ( ( 1 ... M
)  ~<_  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  ~<_  ( 1 ... M
) )  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
180168, 178, 179syl2anc 666 . . 3  |-  ( M  e.  NN  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
181 f1finf1o 7795 . . 3  |-  ( ( ( 1 ... M
)  ~~  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  e.  Fin )  ->  ( T :
( 1 ... M
) -1-1-> ( `' P " { 0 } )  <-> 
T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) )
182180, 166, 181syl2anc 666 . 2  |-  ( M  e.  NN  ->  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  T :
( 1 ... M
)
-1-1-onto-> ( `' P " { 0 } ) ) )
183154, 182mpbid 214 1  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736    C_ wss 3403   {csn 3967   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   "cima 4836    Fn wfn 5576   -->wf 5577   -1-1->wf1 5578   -1-1-onto->wf1o 5580   ` cfv 5581  (class class class)co 6288    ~~ cen 7563    ~<_ cdom 7564   Fincfn 7566   CCcc 9534   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541   RR*cxr 9671    < clt 9672    <_ cle 9673    - cmin 9857   -ucneg 9858    / cdiv 10266   NNcn 10606   2c2 10656   NN0cn0 10866   ZZcz 10934   RR+crp 11299   (,)cioo 11632   ...cfz 11781   ^cexp 12269    _C cbc 12484   #chash 12512   sum_csu 13745   sincsin 14109   cosccos 14110   tanctan 14111   picpi 14112   0pc0p 22620  Polycply 23131  coeffccoe 23133  degcdgr 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ioc 11637  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13123  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-tan 14118  df-pi 14119  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cld 20027  df-ntr 20028  df-cls 20029  df-nei 20107  df-lp 20145  df-perf 20146  df-cn 20236  df-cnp 20237  df-haus 20324  df-tx 20570  df-hmeo 20763  df-fil 20854  df-fm 20946  df-flim 20947  df-flf 20948  df-xms 21328  df-ms 21329  df-tms 21330  df-cncf 21903  df-0p 22621  df-limc 22814  df-dv 22815  df-ply 23135  df-idp 23136  df-coe 23137  df-dgr 23138  df-quot 23237
This theorem is referenced by:  basellem5  24004
  Copyright terms: Public domain W3C validator