MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem4 Structured version   Unicode version

Theorem basellem4 22306
Description: Lemma for basel 22312. By basellem3 22305, the expression  P ( ( cot x ) ^
2 )  =  sin ( N x )  / 
( sin x ) ^ N goes to zero whenever  x  =  n pi  /  N for some  n  e.  ( 1 ... M
), so this function enumerates  M distinct roots of a degree-  M polynomial, which must therefore be all the roots by fta1 21659. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
basel.p  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
basel.t  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
Assertion
Ref Expression
basellem4  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Distinct variable groups:    t, j, n, M    j, N, n, t    P, n
Allowed substitution hints:    P( t, j)    T( t, j, n)

Proof of Theorem basellem4
Dummy variables  k  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basel.n . . . . . . . . 9  |-  N  =  ( ( 2  x.  M )  +  1 )
21basellem1 22303 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
3 tanrpcl 21851 . . . . . . . 8  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( n  x.  pi )  /  N
) )  e.  RR+ )
42, 3syl 16 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+ )
5 2z 10666 . . . . . . . 8  |-  2  e.  ZZ
6 znegcl 10668 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  -u 2  e.  ZZ )
75, 6ax-mp 5 . . . . . . 7  |-  -u 2  e.  ZZ
8 rpexpcl 11868 . . . . . . 7  |-  ( ( ( tan `  (
( n  x.  pi )  /  N ) )  e.  RR+  /\  -u 2  e.  ZZ )  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  RR+ )
94, 7, 8sylancl 655 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR+ )
109rpcnd 11017 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC )
11 basel.p . . . . . . . 8  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
121, 11basellem3 22305 . . . . . . 7  |-  ( ( M  e.  NN  /\  ( ( n  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
132, 12syldan 467 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  ( ( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
) ) )
14 elfzelz 11440 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... M )  ->  n  e.  ZZ )
1514adantl 463 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  ZZ )
1615zred 10735 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  n  e.  RR )
17 pire 21806 . . . . . . . . . . . 12  |-  pi  e.  RR
18 remulcl 9355 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  pi  e.  RR )  -> 
( n  x.  pi )  e.  RR )
1916, 17, 18sylancl 655 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  RR )
2019recnd 9400 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( n  x.  pi )  e.  CC )
21 2nn 10467 . . . . . . . . . . . . . . 15  |-  2  e.  NN
22 nnmulcl 10333 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
2321, 22mpan 663 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
2423peano2nnd 10327 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
251, 24syl5eqel 2517 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  N  e.  NN )
2625adantr 462 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN )
2726nncnd 10326 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  CC )
2826nnne0d 10354 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  =/=  0
)
2920, 27, 28divcan2d 10097 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( N  x.  ( ( n  x.  pi )  /  N
) )  =  ( n  x.  pi ) )
3029fveq2d 5683 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  ( sin `  ( n  x.  pi ) ) )
31 sinkpi 21866 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( sin `  ( n  x.  pi ) )  =  0 )
3215, 31syl 16 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
n  x.  pi ) )  =  0 )
3330, 32eqtrd 2465 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  ( N  x.  ( (
n  x.  pi )  /  N ) ) )  =  0 )
3433oveq1d 6095 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( N  x.  (
( n  x.  pi )  /  N ) ) )  /  ( ( sin `  ( ( n  x.  pi )  /  N ) ) ^ N ) )  =  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) ) )
3519, 26nndivred 10358 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( n  x.  pi )  /  N )  e.  RR )
3635resincld 13410 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  RR )
3736recnd 9400 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  e.  CC )
3826nnnn0d 10624 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  NN0 )
3937, 38expcld 11992 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  e.  CC )
40 sincosq1sgn 21845 . . . . . . . . . . 11  |-  ( ( ( n  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( 0  <  ( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
412, 40syl 16 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  < 
( sin `  (
( n  x.  pi )  /  N ) )  /\  0  <  ( cos `  ( ( n  x.  pi )  /  N ) ) ) )
4241simpld 456 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  0  <  ( sin `  ( ( n  x.  pi )  /  N ) ) )
4342gt0ne0d 9892 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( sin `  (
( n  x.  pi )  /  N ) )  =/=  0 )
4426nnzd 10734 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  N  e.  ZZ )
4537, 43, 44expne0d 11998 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( sin `  ( ( n  x.  pi )  /  N
) ) ^ N
)  =/=  0 )
4639, 45div0d 10094 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( 0  / 
( ( sin `  (
( n  x.  pi )  /  N ) ) ^ N ) )  =  0 )
4713, 34, 463eqtrd 2469 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( P `  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 )
481, 11basellem2 22304 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P
)  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
4948simp1d 993 . . . . . . . 8  |-  ( M  e.  NN  ->  P  e.  (Poly `  CC )
)
50 plyf 21551 . . . . . . . 8  |-  ( P  e.  (Poly `  CC )  ->  P : CC --> CC )
51 ffn 5547 . . . . . . . 8  |-  ( P : CC --> CC  ->  P  Fn  CC )
5249, 50, 513syl 20 . . . . . . 7  |-  ( M  e.  NN  ->  P  Fn  CC )
5352adantr 462 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  P  Fn  CC )
54 fniniseg 5812 . . . . . 6  |-  ( P  Fn  CC  ->  (
( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5553, 54syl 16 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 )  e.  ( `' P " { 0 } )  <-> 
( ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  CC  /\  ( P `  ( ( tan `  ( ( n  x.  pi )  /  N ) ) ^ -u 2 ) )  =  0 ) ) )
5610, 47, 55mpbir2and 906 . . . 4  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  ( `' P " { 0 } ) )
57 basel.t . . . 4  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
5856, 57fmptd 5855 . . 3  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> ( `' P " { 0 } ) )
59 fveq2 5679 . . . . . 6  |-  ( k  =  m  ->  ( T `  k )  =  ( T `  m ) )
60 fveq2 5679 . . . . . 6  |-  ( k  =  x  ->  ( T `  k )  =  ( T `  x ) )
61 fveq2 5679 . . . . . 6  |-  ( k  =  y  ->  ( T `  k )  =  ( T `  y ) )
6214zred 10735 . . . . . . 7  |-  ( n  e.  ( 1 ... M )  ->  n  e.  RR )
6362ssriv 3348 . . . . . 6  |-  ( 1 ... M )  C_  RR
649rpred 11015 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  ( 1 ... M ) )  ->  ( ( tan `  ( ( n  x.  pi )  /  N
) ) ^ -u 2
)  e.  RR )
6564, 57fmptd 5855 . . . . . . 7  |-  ( M  e.  NN  ->  T : ( 1 ... M ) --> RR )
6665ffvelrnda 5831 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( T `  k )  e.  RR )
67 simplr 747 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  <  m )
6863sseli 3340 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... M )  ->  k  e.  RR )
6968ad2antrl 720 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
k  e.  RR )
7063sseli 3340 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... M )  ->  m  e.  RR )
7170ad2antll 721 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  m  e.  RR )
7217a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  pi  e.  RR )
73 pipos 21808 . . . . . . . . . . . . . . . 16  |-  0  <  pi
7473a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  pi )
75 ltmul1 10167 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  m  e.  RR  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( k  < 
m  <->  ( k  x.  pi )  <  (
m  x.  pi ) ) )
7669, 71, 72, 74, 75syl112anc 1215 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  <  m  <->  ( k  x.  pi )  <  ( m  x.  pi ) ) )
7767, 76mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  <  ( m  x.  pi ) )
78 remulcl 9355 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  pi  e.  RR )  -> 
( k  x.  pi )  e.  RR )
7969, 17, 78sylancl 655 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( k  x.  pi )  e.  RR )
80 remulcl 9355 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  pi  e.  RR )  -> 
( m  x.  pi )  e.  RR )
8171, 17, 80sylancl 655 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( m  x.  pi )  e.  RR )
8225ad2antrr 718 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  NN )
8382nnred 10325 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  ->  N  e.  RR )
8482nngt0d 10353 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
0  <  N )
85 ltdiv1 10181 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  pi )  e.  RR  /\  (
m  x.  pi )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8679, 81, 83, 84, 85syl112anc 1215 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  <  (
m  x.  pi )  <-> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) ) )
8777, 86mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N ) )
88 neghalfpirx 21813 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  e.  RR*
8917, 73elrpii 10982 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR+
90 rphalfcl 11003 . . . . . . . . . . . . . . . . 17  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
91 rpge0 10991 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR+  ->  0  <_ 
( pi  /  2
) )
9289, 90, 91mp2b 10 . . . . . . . . . . . . . . . 16  |-  0  <_  ( pi  /  2
)
93 halfpire 21811 . . . . . . . . . . . . . . . . 17  |-  ( pi 
/  2 )  e.  RR
94 le0neg2 9836 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <_  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <_ 
0 ) )
9593, 94ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <_ 
0 )
9692, 95mpbi 208 . . . . . . . . . . . . . . 15  |-  -u (
pi  /  2 )  <_  0
97 iooss1 11323 . . . . . . . . . . . . . . 15  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <_  0 )  ->  ( 0 (,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
9888, 96, 97mp2an 665 . . . . . . . . . . . . . 14  |-  ( 0 (,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
991basellem1 22303 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( ( k  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
10099ad2ant2r 739 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10198, 100sseldi 3342 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
1021basellem1 22303 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN  /\  m  e.  ( 1 ... M ) )  ->  ( ( m  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
103102ad2ant2rl 741 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) ) )
10498, 103sseldi 3342 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( m  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
105 tanord 21879 . . . . . . . . . . . . 13  |-  ( ( ( ( k  x.  pi )  /  N
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  /\  ( ( m  x.  pi )  /  N )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) )  ->  (
( ( k  x.  pi )  /  N
)  <  ( (
m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
106101, 104, 105syl2anc 654 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( k  x.  pi )  /  N )  <  (
( m  x.  pi )  /  N )  <->  ( tan `  ( ( k  x.  pi )  /  N
) )  <  ( tan `  ( ( m  x.  pi )  /  N ) ) ) )
10787, 106mpbid 210 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) ) )
108 tanrpcl 21851 . . . . . . . . . . . . 13  |-  ( ( ( k  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( k  x.  pi )  /  N
) )  e.  RR+ )
109100, 108syl 16 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+ )
110 tanrpcl 21851 . . . . . . . . . . . . 13  |-  ( ( ( m  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  ->  ( tan `  ( ( m  x.  pi )  /  N
) )  e.  RR+ )
111103, 110syl 16 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+ )
112 rprege0 10993 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) ) )
113 rprege0 10993 . . . . . . . . . . . . 13  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+  ->  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )
114 lt2sq 11923 . . . . . . . . . . . . 13  |-  ( ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( k  x.  pi )  /  N ) ) )  /\  ( ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR  /\  0  <_  ( tan `  (
( m  x.  pi )  /  N ) ) ) )  ->  (
( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
115112, 113, 114syl2an 474 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  ( tan `  ( ( m  x.  pi )  /  N ) )  e.  RR+ )  ->  ( ( tan `  ( ( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
116109, 111, 115syl2anc 654 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) )  <  ( tan `  (
( m  x.  pi )  /  N ) )  <-> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
117107, 116mpbid 210 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  < 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )
118 rpexpcl 11868 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
119109, 5, 118sylancl 655 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
120 rpexpcl 11868 . . . . . . . . . . . 12  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
121111, 5, 120sylancl 655 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 )  e.  RR+ )
122119, 121ltrecd 11033 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 )  <  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ 2 )  <->  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) )  <  (
1  /  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ 2 ) ) ) )
123117, 122mpbid 210 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( 1  /  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) )  <  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
124 oveq1 6087 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
n  x.  pi )  =  ( m  x.  pi ) )
125124oveq1d 6095 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( n  x.  pi )  /  N )  =  ( ( m  x.  pi )  /  N
) )
126125fveq2d 5683 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( m  x.  pi )  /  N ) ) )
127126oveq1d 6095 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
128 ovex 6105 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
129127, 57, 128fvmpt 5762 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... M )  ->  ( T `  m )  =  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ -u 2
) )
130129ad2antll 721 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( ( tan `  ( ( m  x.  pi )  /  N ) ) ^ -u 2 ) )
131111rpcnd 11017 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( m  x.  pi )  /  N ) )  e.  CC )
132 2nn0 10584 . . . . . . . . . . 11  |-  2  e.  NN0
133 expneg 11857 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( m  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
134131, 132, 133sylancl 655 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( m  x.  pi )  /  N ) ) ^ 2 ) ) )
135130, 134eqtrd 2465 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  =  ( 1  /  ( ( tan `  ( ( m  x.  pi )  /  N
) ) ^ 2 ) ) )
136 oveq1 6087 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
n  x.  pi )  =  ( k  x.  pi ) )
137136oveq1d 6095 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( n  x.  pi )  /  N )  =  ( ( k  x.  pi )  /  N
) )
138137fveq2d 5683 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( k  x.  pi )  /  N ) ) )
139138oveq1d 6095 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
140 ovex 6105 . . . . . . . . . . . 12  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
141139, 57, 140fvmpt 5762 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... M )  ->  ( T `  k )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
142141ad2antrl 720 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 ) )
143109rpcnd 11017 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( tan `  (
( k  x.  pi )  /  N ) )  e.  CC )
144 expneg 11857 . . . . . . . . . . 11  |-  ( ( ( tan `  (
( k  x.  pi )  /  N ) )  e.  CC  /\  2  e.  NN0 )  ->  (
( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
145143, 132, 144sylancl 655 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( 1  / 
( ( tan `  (
( k  x.  pi )  /  N ) ) ^ 2 ) ) )
146142, 145eqtrd 2465 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  k
)  =  ( 1  /  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ 2 ) ) )
147123, 135, 1463brtr4d 4310 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  k  <  m )  /\  ( k  e.  ( 1 ... M
)  /\  m  e.  ( 1 ... M
) ) )  -> 
( T `  m
)  <  ( T `  k ) )
148147an32s 795 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  /\  k  <  m )  ->  ( T `  m )  <  ( T `  k
) )
149148ex 434 . . . . . 6  |-  ( ( M  e.  NN  /\  ( k  e.  ( 1 ... M )  /\  m  e.  ( 1 ... M ) ) )  ->  (
k  <  m  ->  ( T `  m )  <  ( T `  k ) ) )
15059, 60, 61, 63, 66, 149eqord2 9859 . . . . 5  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( x  =  y  <->  ( T `  x )  =  ( T `  y ) ) )
151150biimprd 223 . . . 4  |-  ( ( M  e.  NN  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... M ) ) )  ->  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
152151ralrimivva 2798 . . 3  |-  ( M  e.  NN  ->  A. x  e.  ( 1 ... M
) A. y  e.  ( 1 ... M
) ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) )
153 dff13 5958 . . 3  |-  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  ( T : ( 1 ... M ) --> ( `' P " { 0 } )  /\  A. x  e.  ( 1 ... M ) A. y  e.  ( 1 ... M ) ( ( T `  x
)  =  ( T `
 y )  ->  x  =  y )
) )
15458, 152, 153sylanbrc 657 . 2  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-> ( `' P " { 0 } ) )
15548simp2d 994 . . . . . . . . 9  |-  ( M  e.  NN  ->  (deg `  P )  =  M )
156 nnne0 10342 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
157155, 156eqnetrd 2616 . . . . . . . 8  |-  ( M  e.  NN  ->  (deg `  P )  =/=  0
)
158 fveq2 5679 . . . . . . . . . 10  |-  ( P  =  0p  -> 
(deg `  P )  =  (deg `  0p
) )
159 dgr0 21614 . . . . . . . . . 10  |-  (deg ` 
0p )  =  0
160158, 159syl6eq 2481 . . . . . . . . 9  |-  ( P  =  0p  -> 
(deg `  P )  =  0 )
161160necon3i 2640 . . . . . . . 8  |-  ( (deg
`  P )  =/=  0  ->  P  =/=  0p )
162157, 161syl 16 . . . . . . 7  |-  ( M  e.  NN  ->  P  =/=  0p )
163 eqid 2433 . . . . . . . 8  |-  ( `' P " { 0 } )  =  ( `' P " { 0 } )
164163fta1 21659 . . . . . . 7  |-  ( ( P  e.  (Poly `  CC )  /\  P  =/=  0p )  -> 
( ( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
16549, 162, 164syl2anc 654 . . . . . 6  |-  ( M  e.  NN  ->  (
( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
166165simpld 456 . . . . 5  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  e.  Fin )
167 f1domg 7317 . . . . 5  |-  ( ( `' P " { 0 } )  e.  Fin  ->  ( T : ( 1 ... M )
-1-1-> ( `' P " { 0 } )  ->  ( 1 ... M )  ~<_  ( `' P " { 0 } ) ) )
168166, 154, 167sylc 60 . . . 4  |-  ( M  e.  NN  ->  (
1 ... M )  ~<_  ( `' P " { 0 } ) )
169165simprd 460 . . . . . 6  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) )
170 nnnn0 10574 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
171 hashfz1 12101 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
172170, 171syl 16 . . . . . . 7  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
173155, 172eqtr4d 2468 . . . . . 6  |-  ( M  e.  NN  ->  (deg `  P )  =  (
# `  ( 1 ... M ) ) )
174169, 173breqtrd 4304 . . . . 5  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  <_  ( # `  (
1 ... M ) ) )
175 fzfid 11779 . . . . . 6  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
176 hashdom 12126 . . . . . 6  |-  ( ( ( `' P " { 0 } )  e.  Fin  /\  (
1 ... M )  e. 
Fin )  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
177166, 175, 176syl2anc 654 . . . . 5  |-  ( M  e.  NN  ->  (
( # `  ( `' P " { 0 } ) )  <_ 
( # `  ( 1 ... M ) )  <-> 
( `' P " { 0 } )  ~<_  ( 1 ... M
) ) )
178174, 177mpbid 210 . . . 4  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  ~<_  ( 1 ... M ) )
179 sbth 7419 . . . 4  |-  ( ( ( 1 ... M
)  ~<_  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  ~<_  ( 1 ... M
) )  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
180168, 178, 179syl2anc 654 . . 3  |-  ( M  e.  NN  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
181 f1finf1o 7527 . . 3  |-  ( ( ( 1 ... M
)  ~~  ( `' P " { 0 } )  /\  ( `' P " { 0 } )  e.  Fin )  ->  ( T :
( 1 ... M
) -1-1-> ( `' P " { 0 } )  <-> 
T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) )
182180, 166, 181syl2anc 654 . 2  |-  ( M  e.  NN  ->  ( T : ( 1 ... M ) -1-1-> ( `' P " { 0 } )  <->  T :
( 1 ... M
)
-1-1-onto-> ( `' P " { 0 } ) ) )
183154, 182mpbid 210 1  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705    C_ wss 3316   {csn 3865   class class class wbr 4280    e. cmpt 4338   `'ccnv 4826   "cima 4830    Fn wfn 5401   -->wf 5402   -1-1->wf1 5403   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080    ~~ cen 7295    ~<_ cdom 7296   Fincfn 7298   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   RR*cxr 9405    < clt 9406    <_ cle 9407    - cmin 9583   -ucneg 9584    / cdiv 9981   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   RR+crp 10979   (,)cioo 11288   ...cfz 11424   ^cexp 11849    _C cbc 12062   #chash 12087   sum_csu 13147   sincsin 13332   cosccos 13333   tanctan 13334   picpi 13335   0pc0p 20989  Polycply 21537  coeffccoe 21539  degcdgr 21540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-tan 13340  df-pi 13341  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-0p 20990  df-limc 21183  df-dv 21184  df-ply 21541  df-idp 21542  df-coe 21543  df-dgr 21544  df-quot 21642
This theorem is referenced by:  basellem5  22307
  Copyright terms: Public domain W3C validator