MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basdif0 Structured version   Unicode version

Theorem basdif0 18580
Description: A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
basdif0  |-  ( ( B  \  { (/) } )  e.  TopBases  <->  B  e.  TopBases )

Proof of Theorem basdif0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3540 . . . 4  |-  B  C_  ( B  u.  { (/) } )
2 undif1 3775 . . . 4  |-  ( ( B  \  { (/) } )  u.  { (/) } )  =  ( B  u.  { (/) } )
31, 2sseqtr4i 3410 . . 3  |-  B  C_  ( ( B  \  { (/) } )  u. 
{ (/) } )
4 snex 4554 . . . 4  |-  { (/) }  e.  _V
5 unexg 6402 . . . 4  |-  ( ( ( B  \  { (/)
} )  e.  TopBases  /\  {
(/) }  e.  _V )  ->  ( ( B 
\  { (/) } )  u.  { (/) } )  e.  _V )
64, 5mpan2 671 . . 3  |-  ( ( B  \  { (/) } )  e.  TopBases  ->  (
( B  \  { (/)
} )  u.  { (/)
} )  e.  _V )
7 ssexg 4459 . . 3  |-  ( ( B  C_  ( ( B  \  { (/) } )  u.  { (/) } )  /\  ( ( B 
\  { (/) } )  u.  { (/) } )  e.  _V )  ->  B  e.  _V )
83, 6, 7sylancr 663 . 2  |-  ( ( B  \  { (/) } )  e.  TopBases  ->  B  e.  _V )
9 elex 3002 . 2  |-  ( B  e.  TopBases  ->  B  e.  _V )
10 indif1 3615 . . . . . . . . . . 11  |-  ( ( B  \  { (/) } )  i^i  ~P (
x  i^i  y )
)  =  ( ( B  i^i  ~P (
x  i^i  y )
)  \  { (/) } )
1110unieqi 4121 . . . . . . . . . 10  |-  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  =  U. ( ( B  i^i  ~P ( x  i^i  y
) )  \  { (/)
} )
12 unidif0 4486 . . . . . . . . . 10  |-  U. (
( B  i^i  ~P ( x  i^i  y
) )  \  { (/)
} )  =  U. ( B  i^i  ~P (
x  i^i  y )
)
1311, 12eqtri 2463 . . . . . . . . 9  |-  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  =  U. ( B  i^i  ~P (
x  i^i  y )
)
1413sseq2i 3402 . . . . . . . 8  |-  ( ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <-> 
( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
1514ralbii 2760 . . . . . . 7  |-  ( A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
16 inss2 3592 . . . . . . . . . 10  |-  ( x  i^i  y )  C_  y
17 inss2 3592 . . . . . . . . . . . . 13  |-  ( B  i^i  { (/) } ) 
C_  { (/) }
1817sseli 3373 . . . . . . . . . . . 12  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  e.  { (/) } )
19 elsni 3923 . . . . . . . . . . . 12  |-  ( y  e.  { (/) }  ->  y  =  (/) )
2018, 19syl 16 . . . . . . . . . . 11  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  =  (/) )
21 0ss 3687 . . . . . . . . . . 11  |-  (/)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )
2220, 21syl6eqss 3427 . . . . . . . . . 10  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  y  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
2316, 22syl5ss 3388 . . . . . . . . 9  |-  ( y  e.  ( B  i^i  {
(/) } )  ->  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
2423rgen 2802 . . . . . . . 8  |-  A. y  e.  ( B  i^i  { (/)
} ) ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y
) )
25 ralunb 3558 . . . . . . . 8  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( A. y  e.  ( B  i^i  { (/)
} ) ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y
) )  /\  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( B  i^i  ~P ( x  i^i  y
) ) ) )
2624, 25mpbiran 909 . . . . . . 7  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  ( B  \  { (/) } ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
27 inundif 3778 . . . . . . . 8  |-  ( ( B  i^i  { (/) } )  u.  ( B 
\  { (/) } ) )  =  B
2827raleqi 2942 . . . . . . 7  |-  ( A. y  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
2915, 26, 283bitr2i 273 . . . . . 6  |-  ( A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3029ralbii 2760 . . . . 5  |-  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  ( B  \  { (/) } ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
31 inss1 3591 . . . . . . . . 9  |-  ( x  i^i  y )  C_  x
3217sseli 3373 . . . . . . . . . . 11  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  e.  { (/) } )
33 elsni 3923 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  x  =  (/) )
3432, 33syl 16 . . . . . . . . . 10  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  =  (/) )
3534, 21syl6eqss 3427 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  x  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
3631, 35syl5ss 3388 . . . . . . . 8  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  (
x  i^i  y )  C_ 
U. ( B  i^i  ~P ( x  i^i  y
) ) )
3736ralrimivw 2821 . . . . . . 7  |-  ( x  e.  ( B  i^i  {
(/) } )  ->  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
3837rgen 2802 . . . . . 6  |-  A. x  e.  ( B  i^i  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )
39 ralunb 3558 . . . . . 6  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <-> 
( A. x  e.  ( B  i^i  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  /\  A. x  e.  ( B  \  { (/)
} ) A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
4038, 39mpbiran 909 . . . . 5  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  ( B  \  { (/) } ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4127raleqi 2942 . . . . 5  |-  ( A. x  e.  ( ( B  i^i  { (/) } )  u.  ( B  \  { (/) } ) ) A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4230, 40, 413bitr2i 273 . . . 4  |-  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y ) 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P ( x  i^i  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) )
4342a1i 11 . . 3  |-  ( B  e.  _V  ->  ( A. x  e.  ( B  \  { (/) } ) A. y  e.  ( B  \  { (/) } ) ( x  i^i  y )  C_  U. (
( B  \  { (/)
} )  i^i  ~P ( x  i^i  y
) )  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
44 difexg 4461 . . . 4  |-  ( B  e.  _V  ->  ( B  \  { (/) } )  e.  _V )
45 isbasisg 18574 . . . 4  |-  ( ( B  \  { (/) } )  e.  _V  ->  ( ( B  \  { (/)
} )  e.  TopBases  <->  A. x  e.  ( B  \  { (/)
} ) A. y  e.  ( B  \  { (/)
} ) ( x  i^i  y )  C_  U. ( ( B  \  { (/) } )  i^i 
~P ( x  i^i  y ) ) ) )
4644, 45syl 16 . . 3  |-  ( B  e.  _V  ->  (
( B  \  { (/)
} )  e.  TopBases  <->  A. x  e.  ( B  \  { (/)
} ) A. y  e.  ( B  \  { (/)
} ) ( x  i^i  y )  C_  U. ( ( B  \  { (/) } )  i^i 
~P ( x  i^i  y ) ) ) )
47 isbasisg 18574 . . 3  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  C_  U. ( B  i^i  ~P ( x  i^i  y ) ) ) )
4843, 46, 473bitr4d 285 . 2  |-  ( B  e.  _V  ->  (
( B  \  { (/)
} )  e.  TopBases  <->  B  e.  TopBases ) )
498, 9, 48pm5.21nii 353 1  |-  ( ( B  \  { (/) } )  e.  TopBases  <->  B  e.  TopBases )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1369    e. wcel 1756   A.wral 2736   _Vcvv 2993    \ cdif 3346    u. cun 3347    i^i cin 3348    C_ wss 3349   (/)c0 3658   ~Pcpw 3881   {csn 3898   U.cuni 4112   TopBasesctb 18524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-sn 3899  df-pr 3901  df-uni 4113  df-bases 18527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator